Demystifying the fusion mechanism in heavy ion collisions within full Langevin dissipative dynamics

Yannen Jaganathen, Michał Kowal, Krzysztof Pomorski (NCBJ, Warsaw) Based on: <u>Phys. Lett. B 862 (2025) 139302</u>

Description of the fusion mechanism within Langevin dynamics

Super-heavy elements with Z > 103 do not occur in nature. They can only be produced in the laboratory by fusing two lighter nuclei.

Our primary goal is to gain insights into the **fusion reaction mechanisms** in the domain of cold synthesis reactions (Z < 113, $E^* \approx 10 - 20$ MeV), in particular on the understanding of the hindrance mechanism which prevents the formation of super-heavy nuclei.

We propose a comprehensive dissipative dynamics Langevin-based formalism to describe the unrestricted motion of the systems in terms of elongation, neck and asymmetry variables.

1. The Ingredients of the Langevin Formalism

- ► The **Potential**
- ► The Mass Tensor
- ► The Friction Forces
- ► The Langevin/Random Force and Its Origin
- ► The Calculated **Observables**
- 2. The Langevin Formalism and the Fusion Mechanism in Heavy-Ion Collisions
- **3.** Applications
- 4. Summary and Perspectives

The fusion process (Schematic view)

Micro-macroscopic description of fusion:

- ► Complexity/impossibility of tracking all internal degrees of freedom
- Identification of slow collective degrees of freedom immersed in a bath of faster dynamics
- Emergence of the mechanisms of **friction** and **random forces**
- ► Macroscopic model with some microscopic corrections.

Collective variables adapted to fusion/fission – Shape variables

- ► Axially symmetric shapes
- ► Spherical cups connected by quadratic surfaces^[1]

 $\Delta = \frac{\bar{R_1 - R_2}}{R_1 + R_2}$

- Shape collective/slow variables:
 - **Distance/elongation**: $\rho = \frac{d}{R_1 + R_2}$
 - Neck/deformation: $\lambda = \frac{l_1 + l_2}{R_1 + R_2}$
 - Asymmetry:

[1] J. Błocki, H. Feldmeier and W. J. Świątecki, Nucl. Phys. A 459 (1986) 145

Collective variables adapted to fusion/fission – Shape variables

- ► Axially symmetric shapes
- Spherical cups connected by quadratic surfaces^[1]
- Shape collective/slow variables:
 - Distance/elongation: $\rho = \frac{d}{R_1 + R_2}$
 - Neck/deformation: $\lambda = \frac{l_1^2 + l_2^2}{R_1 + R_2}$
 - Asymmetry: $\Delta = \frac{R_1 R_2}{R_1 + R_2}$
- Scission is well-defined: $\lambda_{\text{scission}} = 1 \frac{1}{\rho_{\text{scission}}}$
 - $ho_{
 m scission}$
 - \rightarrow Suited to describe fusion/fission (vs. multipole moments)
- [1] J. Błocki, H. Feldmeier and W. J. Świątecki, Nucl. Phys. A 459 (1986) 145

Collective variables adapted to fusion/fission – Angle variables

- Collective angle variables
 - Angle of the whole system θ_0
 - Angle of the first sphere θ_1
 - Angle of the second sphere θ_2
- Variations linked to angular momentum, in particular: $p_{\theta_0} + p_{\theta_1} + p_{\theta_2} = L_{init}$
- Exact treatment of angular momentum
- \rightarrow Full Langevin 6-dimensional dissipative dynamics

The Langevin system of equations

• Denoting collective/slow variables $q_i(t)$ and their associated moments $p_i(t)$, the Langevin equations read:

$$\dot{q}_{i}(t) = \sum_{k} (\mathcal{M}^{-1})_{ik} p_{k} \qquad \longleftrightarrow (P = MV)$$

$$\dot{p}_{i}(t) = -\frac{\partial H}{\partial q_{i}} - \sum_{k} \gamma_{ik} \dot{q}_{k} + \sum_{k} g_{ik} \xi_{k}(t) \qquad \longleftrightarrow \left(\frac{dP}{dt} = \sum F\right)$$

The Langevin system of equations

• Denoting collective/slow variables $q_i(t)$ and their associated moments $p_i(t)$, the Langevin equations read:

 \rightarrow A comprehensive understanding of the dynamics process (in comparison to the random walk f. eg.).

Collective Potential Energy

- Yukawa-plus-exponential folding potential + Coulomb
- Parameters taken from a previous fit to experimental masses and fusion barrier heights ^[1]
- ► No shell effects at the moment.

Y. Jaganathen – UW Seminar – Apr 2025

[1] H. J. Krappe *et al.*, Phys. Rev. C 20 (1979) 992–1013

7

Collective Potential Energy

- Yukawa-plus-exponential folding potential + Coulomb
- Parameters taken from a previous fit to experimental masses and fusion barrier heights ^[1]
- ► No shell effects at the moment.

7

Mass tensor / Kinetic Energy

Werner-Wheeler flow approximation:

- Incompressibility (matter density is uniformly distributed)
- ► The flow is **irrotational** (the moving planes remain plane)

Mass tensor / Kinetic Energy

Werner-Wheeler flow approximation:

- Incompressibility (matter density is uniformly distributed)
- ► The flow is **irrotational** (the moving planes remain plane)

Mass tensor / Kinetic Energy

Friction forces

- Proximity formalism (to account for some quantum effects):
 Possible matter flow/friction before contact (d = 3.2 fm)
 - 0.8 -1 0.6 $\log(\Gamma_{\rho\rho}/(1\hbar))$ 2.0- $\boldsymbol{\prec}$ 0.4 -3.0--4.0 0.2 -5-5.0-60 0.0 2 3 5 6 ρ Po Scission line $\lambda = 1$ – 0.8 - 3 0.6 - 1 $\log(\Gamma_{\lambda\lambda}/(1\hbar))$ ~ Friction even when the system is 4 separated (proximity) 10 0.2 - - 3 0.0 .2 0 -3 0 0.0 L 0 1 2 3 5 6

1.0

- **Shape friction**:
 - Wall friction (collisions nucleons \leftrightarrow nuclear surface)
 - + Wall-plus-window friction (between the two fragments)

ρ

Friction forces

- Proximity formalism (to account for some quantum effects):
 Possible matter flow/friction before contact (d = 3.2 fm)
- ► Shape friction:
 - \blacktriangleright Wall friction (collisions nucleons \leftrightarrow nuclear surface)
 - ► + Wall-plus-window friction (between the two fragments)
- Strong friction at the scission line:
 - ► The system slows down at the scission line
 - ► Re-separation is irreversible

Friction forces

- Proximity formalism (to account for some quantum effects):
 Possible matter flow/friction before contact (d = 3.2 fm)
- ► Shape friction:
 - \blacktriangleright Wall friction (collisions nucleons \leftrightarrow nuclear surface)
 - ► + Wall-plus-window friction (between the two fragments)
- ► Strong friction at the scission line:
 - ► The system slows down at the scission line
 - ► Re-separation is irreversible
- ► Angular friction:
 - Sliding friction
 - No rolling friction

Langevin/random forces

We assume a simple memoryless Langevin force (white noise):

$$F_i = \sum_k g_{ik} \xi_k(t)$$

 $\xi_k(t)$ are time-dependent Gaussian random variables: $\langle \xi_k(t) \rangle = 0$ $\langle \xi_k(t), \xi_{k'}(t') \rangle = 2\delta_{kk'}\delta(t-t')$

► The diffusion tensor is given by the **Einstein relation**:

$$\sum_{k} g_{ik} g_{kj} = D_{ij} = k_B T^* \gamma_{ij}, \qquad T^* = \frac{E_0}{\tanh(E_0/T)}, \qquad T = \sqrt{\frac{E^*}{a}}$$

 $E_0 = 2$ MeV is the zero-point collective energy of the heat bath oscillators E^* is the **dissipated energy**, a = A/8 MeV is the **level density parameter**.

Langevin/random forces

► We assume a simple memoryless Langevin force (white noise):

$$F_i = \sum_k g_{ik} \xi_k(t)$$

 $\xi_k(t)$ are time-dependent Gaussian random variables: $\langle \xi_k(t) \rangle = 0$ $\langle \xi_k(t), \xi_{k'}(t') \rangle = 2\delta_{kk'}\delta(t-t')$

► The diffusion tensor is given by the **Einstein relation**:

$$\sum_{k} g_{ik} g_{kj} = D_{ij} = k_B T^* \gamma_{ij}, \qquad T^* = \frac{E_0}{\tanh(E_0/T)}, \qquad T = \sqrt{\frac{E^*}{a}}$$

 $E_0 = 2$ MeV is the zero-point collective energy of the heat bath oscillators E^* is the **dissipated energy**, a = A/8 MeV is the **level density parameter**.

A 30 year-old project

W. Przystupa, K. Pomorski, Nucl. Phys. A 572(1) (1994) 153

- Systems: ⁶⁴Ni + ^{92, 96}Zr → ¹⁵⁶Er
- ▶ Minimal shells effects at the incident energies (50 MeV).
- ► Calculations with the **asymmetry variable frozen**.
- Correction of the diffusion tensor by a factor 6 to reproduce the tails of the spin distributions
- Possible improvement:
 - **Full calculation** with asymmetry needed

Physical vs. practical collective variables

- Unlike the multipole moments, the (ρ, λ, σ) variables are **extremely irregular:**
 - Many borders,
 - ► Small proximity region,
 - ► Regime change.
- A correct treatment of numerical precision is needed.
- Extrapolation is needed for the calculations of the physical quantities and their derivatives.
 The regions of extrapolation should avoid the borders.
- ► The process of fusion itself is not fully tractable numerically.

The three main stages of the collision:

- **1.** A first violent deceleration during which: - The system loses most of its kinetic energy - There is almost no deformation of the nuclei $(\dot{\lambda} = (\mathcal{M}_{\rho\lambda})^{-1} p_{\rho} + (\mathcal{M}_{\lambda\lambda})^{-1} p_{\lambda})$ $= -\infty + \infty)$
 - Unstable balance close to the lambda border

The three main stages of the collision:

- **1.** A first violent deceleration during which: - The system loses most of its kinetic energy - There is almost no deformation of the nuclei $(\dot{\lambda} = (\mathcal{M}_{\rho\lambda})^{-1} p_{\rho} + (\mathcal{M}_{\lambda\lambda})^{-1} p_{\lambda})$ $= -\infty + \infty)$
 - Unstable balance close to the lambda border
 - Physical interpretation: (Extra)-deformation can only occur when the fragments interact with each other
 - Treated exactly (conservative forces).

- 2. The "Kiss of death" when friction starts
 - A little sudden change in $p_{\rho} \rightarrow$ infinite push to the scission line $(\dot{\lambda} = (\mathcal{M}_{\rho\lambda})^{-1} p_{\rho} + (\mathcal{M}_{\lambda\lambda})^{-1} p_{\lambda})$ $= -\infty + \infty)$
 - Deformation starts and remains.

- 2. The "Kiss of death" when friction starts
 - A little sudden change in $p_{\rho} \rightarrow$ infinite push to the scission line $(\dot{\lambda} = (\mathcal{M}_{\rho\lambda})^{-1}p_{\rho} + (\mathcal{M}_{\lambda\lambda})^{-1}p_{\lambda})$ $= -\infty + \infty)$
 - Deformation starts and remains.
 - Inherent instability of non-saturated nucleonic densities (Sudden approximation in HF when the nuclear tails touch)
 - This step is <u>NOT</u> treated numerically: We start the calculation from the touching point

"Sudden approximation" – K. Pomorski, K. Dietrich Z. Phys. A, 295 (1980) 335

The three main stages of the collision:

- 3. A long creeping motion
 - which leads to fusion or separation
 - Solved numerically

Defining fusing and non-fusing events

- Fusing conditions:
 - $\lambda = 1$ (half of the spheres are mixed)
 - $\rho(1 \lambda) = \Delta^2$ (window angle fully open)
 - ightarrow
 ho = 0.5
- Non-fusing conditions:
 - $\lambda \rightarrow \lambda_{min} = 10^{-2}$
 - $\rho \rightarrow \rho_{max} = 3$
 - No fusion after $N_{max} = 500,000$ steps.

The observables

- ► The resolution of the Langevin equations generates a distribution of trajectories due to the fluctuation force.
- We use 500,000 1,000,000 trajectories.
- Asymmetry is free to change.
- ► Calculations performed on the **CiŚ cluster** (Świerk/Warsaw).
- The **spin distribution** is calculated as a Monte-Carlo integral on a given bin $i \equiv \ell_i$:

$$\sigma_{\ell} = \left(\frac{d\sigma_{fus}}{d\ell}\right)_{\ell_i} = \frac{2\pi}{k^2} \ell_i^2 \frac{N_i^{fus}}{N_i^{tot}}$$

where $\ell_{init} = \ell_{max} \sqrt{x}$, x a random number in [0,1] (for easy derived formulas).

- ► From the spin distribution, one can calculate:
 - ► The total cross section / probability for the formation of the compound nucleus
 - $\langle \ell \rangle, \langle \ell^2 \rangle$
 - Excitation functions.

64 Ni + $^{92, 96}$ Zr \rightarrow $^{156, 160}$ Er – Asymmetry fixed

- ► $^{64}Ni + ^{92}Zr: Q_{fus,calc} = Q_{fus,exp} \rightarrow no correction needed$
- ► 64 Ni + 96 Zr: Difference of 3.5 MeV \rightarrow correction needed Effect of deformation?
- Spin distributions are more natural with the Langevin force.
- They drop at the correct angular momentum
 - \rightarrow Relevant for a correct description of fission.
- ▶ The experimental data come from Refs. [2,3]

[1] W. Przystupa, K. Pomorski, Nucl. Phys. A 572(1) (1994) 153
[2] W. Kuhn *et al.*, Phy. Rev. Lett. 62 (1989) 1103
[3] A. M. Stefanini *et al.*, Phys. Lett. B 252 (1990) 43

64 Ni + $^{92, 96}$ Zr \rightarrow $^{156, 160}$ Er – Effect of the Asymmetry

- The release of the asymmetry decreases the spin distributions (non-asymmetrical case)
- ▶ Great agreement to the experimental data^[2,3].
- In the ⁶⁴Ni + ⁹⁶Zr case, little discreprancies in the spin distributions, despite the energy correction
- ▶ The total cross section (160 mb) is well reproduced.

W. Przystupa, K. Pomorski, Nucl. Phys. A 572(1) (1994) 153
 W. Kuhn *et al.*, Phy. Rev. Lett. 62 (1989) 1103
 A. M. Stefanini *et al.*, Phys. Lett. B 252 (1990) 43

A deep understanding of the fusion process (Preliminary examples)

And various other observables: diffusion tensor, the number of rotations the system udergoes before fusion etc.

Summary and Perspectives

- We have derived a fully 6-dimensional dissipative dynamics Langevin-based formalism to describe the unrestricted motion of the systems in terms of elongation, neck and asymmetry variables.
- Thanks to a correct treatment of the different stages of fusion, the spin distributions are now in great agreement with experimental data.
- ► The Langevin formalism allows for a deep understanding of the fusion process: evolution of the asymmetry, angular momentum/rotations of the fragments etc.
- ► In the future:
 - ▶ We will study the effect of the **asymmetry of entrance channel** on the formation of the compound system.
 - ► We will tackle the hindrance problem by comparing the ⁴⁸Ca/⁵⁰Ti/⁵⁴Cr + ²⁰⁸Pb systems.
- ► We are planning to make the following improvements of the formalism:
 - ► The addition of **shell effects** for a **fully microscopic-macroscopic picture**
 - ► The testing of different forms of stochastic noises (color noises),
 - ► The incorporation of **neutron emission** throughout the process.

Summary and Perspectives

- We have derived a fully 6-dimensional dissipative dynamics Langevin-based formalism to describe the unrestricted motion of the systems in terms of elongation, neck and asymmetry variables.
- Thanks to a **correct treatment of the different stages of fusion**, the spin distributions are now **in great agreement** with experimental data.
- The Langevin formalism allows for a deep understanding of the fusion process: evolution of the asymmetry, angular momentum/rotations of the fragments etc.
- In the future:
 - We will study the effect of the **asymmetry of entrance channel** on the formation of the compound system.
 - We will tackle the hindrance problem by comparing the ⁴⁸Ca/⁵⁰Ti/⁵⁴Cr + ²⁰⁸Pb systems. Thank you for your attention!
- We are planning to make the following improvements of the formalism:
 - The addition of **shell effects** for a **fully microscopic-macroscopic picture**
 - The testing of different forms of stochastic noises (color noises),
 - The incorporation of **neutron emission** throughout the process.