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Description of the fusion mechanism within Langevin dynamics

107 E T T L) 1 I T Ll Ll I I T 1 L) 1 I T L T T
. : Cold fusion (1n):
. . ith 208Pp and 209Bi
Super-heavy elements with Z > 103 do not occur in nature. 0 with 2%%Pb and 2%%Bi targets

They can only be produced in the laboratory by fusing two lighter nuclei. F .
10%
Our primary goal is to gain insights into the fusion reaction mechanisms “g 107 3
in the domain of cold synthesis reactions (Z< 113, E* = 10— 20 MeV), g 10° E
in particular on the understanding of the hindrance mechanism which § 10 a
prevents the formation of super-heavy nuclei. 100 4
1071 'g
We propose a comprehensive dissipative dynamics Langevin-based 102 ;
formalism to describe the unrestricted motion of the systems R A RS R .EO

Proton numbér (CN)

in terms of elongation, neck and asymmetry variables.
Z2=113,22fb

(Only 3 atomsin
576 days of irradiation)

Credits: T. Cap, M. Kowal
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The Ingredients of the Langevin Formalism
The Potential

The Mass Tensor

The Friction Forces

The Langevin/Random Force and Its Origin
The Calculated Observables

>

>

>

>

>

The Langevin Formalism and the Fusion Mechanism in Heavy-lon Collisions

Applications

Summary and Perspectives

Full Langevin Dissipative Dynamics
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The fusion process (Schematic view)

Capture ‘ Fusion . Survival
— —_—

Compound
nucleus

-
e

Projectile

\/

Target Dinuclear
system

Micro-macroscopic description of fusion:
» Complexity/impossibility of tracking all internal degrees of freedom
» |dentification of slow collective degrees of freedom immersed in a bath of faster dynamics
» Emergence of the mechanisms of friction and random forces

» Macroscopic model with some microscopic corrections.
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Collective variables adapted to fusion/fission — Shape variables

[ 927r + ®4Ni ]

» Axially symmetric shapes

8
i i [1] i 1 . .
» Spherical cups connected by quadratic surfaces 6l ] Bipartite
§ 4 F — p = 1.5
» Shape collective/slow variables: o | J - A=03
. . . _ d 0 i | ! . l]r . ! l Cl .| A= A0
» Distance/elongation: p = RiE s o s 0 s -0
. L+l . e z >
» Neck/deformation: 1 = RiR R, q R,
R;-R
» Asymmetry: =1 2 8 - .
R{+R, 6 L ] Monopartite
Sl i p=15
A , A=04
] ) A=A
0 \ 0

A
\
A
\
A
A\

[1] J. Btocki, H. Feldmeier and W. J. Swigtecki, Nucl. Phys. A 459 (1986) 145
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Collective variables adapted to fusion/fission — Shape variables

[ 927r + ®4Ni ]

» Axially symmetric shapes

8
. : [1] : S
» Spherical cups connected by quadratic surfaces 6l 1 Bipartite
§ 4 - p=15
» Shape collective/slow variables: 2 L J ] 1=0.3
. . . _ d 0 | l Cl .| A= A0
» Distance/elongation: p = R P o ; 0 ST T,
. L+l . e z >
» Neck/deformation: 1 = RiTRS 3 P R,
Ri-R
» Asymmetry: =+ 8 - )
R{+R, 6 L ] Monopartite
N4l 1 p=15
. 1 ¥ =
» Scission is well-defined: Agqission = 1 — al ] o= Uz
Pscission N A=A
— Suited to describe fusion/fission 0=
(vs. multipole moments) « - = —s

[1] J. Btocki, H. Feldmeier and W. J. Swigtecki, Nucl. Phys. A 459 (1986) 145
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Collective variables adapted to fusion/fission — Angle variables

» Collective angle variables
» Angle of the whole system 6,
» Angle of the first sphere 6,
» Angle of the second sphere 6,

» Variations linked to angular momentum, in particular:

» Exact treatment of angular momentum

— Full Langevin 6-dimensional dissipative dynamics
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The Langevin system of equations

» Denoting collective/slow variables g;(t) and their associated moments p; (t), the Langevin equations read:

Gi(D) = Z(M“l)ik D & (P = MV)

Pl(t)————ZVLkCIk‘Fzgzkfk(t) N %=ZF)
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The Langevin system of equations

» Denoting collective/slow variables g;(t) and their associated moments p; (t), the Langevin equations read:

)

[ Mass tensor J

q;(t) = z(Jvr—l)ik D & (P =MV)

Pl(t)_———Z)’zk%"‘zgzkfk(t) N %zZF)

Conservative forces - .
{ H=T+V) } { Friction forces } { Langevin/random forces}

— A comprehensive understanding of the dynamics process (in comparison to the random walk f. eg.).
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Collective Potential Energy

A T TV 190
2 \ { Monopartite }7 5 / 170
S T . ,
= N7/ - ——==st—xu 150
» Yukawa-plus-exponential folding potential > 5 ________________ e b0
+ Coulomb g 0.6 \[|7/ 7= .
» Parameters taken from a previous fit to ~< / 7
0 . . . [1] ' { A : '
experimental masses and fusion barrier heights 0.4 ’ Bipartite
» No shell effects at the moment. 0.2 | OH®
0.0
6
[ ScissionlineA =1 _/% P >
Elongation
Collective deformation potential
[1] H.J. Krappe et al., Phys. Rev. C 20 (1979) 992-1013 of °2Zr + ®*Ni in MeV
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Collective Potential Energy

» Yukawa-plus-exponential folding potential
+ Coulomb
» Parameters taken from a previous fit to
experimental masses and fusion barrier heights [

» No shell effects at the moment.

Neck / Fusion

[ ScissionlineA =1 _/%

[1] H. J. Krappe et al., Phys. Rev. C 20 (1979) 992-1013

Full Langevin Dissipative Dynamics

6

Elongation

Collective deformation potential
of 92Zr + ®4Ni in MeV
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Mass tensor / Kinetic Energy

» Werner-Wheeler flow approximation:
» Incompressibility (matter density is uniformly distributed)
» The flow is irrotational (the moving planes remain plane)

[ Scission line ]

([ log(My, /(172 /MeV)) | [ log(Mya/(182/MeV)) |
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Mass tensor / Kinetic Energy

» Werner-Wheeler flow approximation:
» Incompressibility (matter density is uniformly distributed)
» The flow is irrotational (the moving planes remain plane)

[ Scission line ]

([ log(My, /(172 /MeV)) | [ log(Mya/(182/MeV)) |
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Mass tensor / Kinetic Energy

» Inthe rotational space, Mass tensor <> Moments of inertia —
[ Scission line ]

A 1.0
c
§e)
3 0.8
LL
S~
§ 0.6
2 ~<
0.4
0.2
0.0

Elongation
h
[ Lot / Troy ]
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Friction forces

» Proximity formalism (to account for some quantum effects):

Possible matter flow/friction before contact (d = 3.2 fm) 1

_(Log(T, /(1) |

» Shape friction:
» Wallfriction (collisions nucleons €= nuclear surface)
» + Wall-plus-window friction (between the two fragments)

{ Scissionlined =1 —%

[ log(y, /(1R)) |

Friction even when the systemiis
separated (proximity)
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Friction forces

Proximity formalism (to account for some quantum effects):
Possible matter flow/friction before contact (d = 3.2 fm)

» Shape friction:

>

-1

_(Log(T, /(1) |

Wall friction (collisions nucleons €= nuclear surface)

» + Wall-plus-window friction (between the two fragments)

» Strong friction at the scission line:

» The system slows down at the scission line
» Re-separationis irreversible

A

Full Langevin Dissipative Dynamics
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Friction forces

» Proximity formalism (to account for some quantum effects):
Possible matter flow/friction before contact (d = 3.2 fm)

» Shape friction:
» Wallfriction (collisions nucleons €= nuclear surface)
» + Wall-plus-window friction (between the two fragments)

» Strong friction at the scission line:
» The system slows down at the scission line
» Re-separationis irreversible

» Angular friction:
» Sliding friction
» Norolling friction

Full Langevin Dissipative Dynamics

-1

[ Llog(Iyp /(1) |

[ log(y, /(1R)) |
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Langevin/random forces

» We assume a simple memoryless Langevin force (white noise):

5
F= ) gudl®
k 4
&, (t) are time-dependent Gaussian random variables: % 3
(§r (D) =0 = ,
(€ (8), §1r (£)) = 26844a6(t — 1) =
1
» Thediffusion tensor is given by the Einstein relation: okl
E, - o 1 2 3 4 5
oG = Dii = kgT™y;: T* = , — */ T [MeV]
Z glkgk] i B il tanh(EO/T) a

E, = 2 MeV is the zero-point collective energy of the heat bath oscillators

E” is the dissipated energy, a = A/8 MeV is the level density parameter.

Quantum-corrected temperature
(Courtesy of K. Pomorski)
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Langevin/random forces

» We assume a simple memoryless Langevin force (white noise):

F= ) gudl®
k

&, (t) are time-dependent Gaussian random variables:
(& () =0
(& (), & (t)) = 2641, 6(t — t)

=2 = N W

[ log(g,) |

| [ | ' ] ' l '
o0 =] o th B W b e

» Thediffusion tensor is given by the Einstein relation:

E, :
— T= [E
tanh(Eo/T)’ fa

z 9i9rj = Dij = kgT7yy;,  T°
k

E, = 2 MeV is the zero-point collective energy of the heat bath oscillators
E* is the dissipated energy, a = A/8 MeV is the level density parameter.

Full Langevin Dissipative Dynamics
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A 30 year-old project

W. Przystupa, K. Pomorski, Nucl. Phys. A572(1) (1994) 153

8 T T T
8 T T T T T T
[ o T e
6} fs U r=118fm __ Ecn1395MeV
7 s - -1
»  Systems: 4Ni + 92 %6Zr - 156Er - o] i ]
. : - n_x=1 .
» Minimal shells effects at the incident energies (50 MeV). ¢ =.§g 4t e\ .
' L
. . . 2 " 2 I .. ..
» Calculations with the asymmetry variable frozen. = . ]
3 _
= Of———— ey € NN 4
B | T18fm 640 o 927 | .E_' 0 x:ﬁ T . t‘wz'.
» Correction of the diffusion tensor by a factor 6 N AR L 5o o= 1308 eV
. . . . . i ] 6F, - -
to reproduce the tails of the spin distributions A x6 L"o'““"“ R
7 -~ o~
‘ o ‘(/ \‘\ ; 1 4 B /, \
. . / ty o
» Possible improvement: SRS ! o\
. . 2 i g ™ \
» Full calculation with asymmetry needed { 2r /.0
3 i 7 - Y \ L -

U i i l‘\. \‘.. 3 0 ! n .\._ ..._.
0 10 20 30 & 50 60 70 0 10 20 30 40 50 60 70
L(fh) L (f)
[ Raw results ]
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Physical vs. practical collective variables

{ ScissionlineA =1 —% ]

» Unlike the multipole moments, the (p, 4, o) variables are
extremely irregular:
» Many borders,
» Small proximity region,
» Regime change.

» A correct treatment of numerical precision is needed.

» Extrapolation is needed for the calculations of the physical
quantities and their derivatives.
The regions of extrapolation should avoid the borders.

» The process of fusion itself is not fully tractable numerically.

[ 10g(T,,, /(11)) |
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The fusion process

The three main stages of the collision:

1. Afirstviolent deceleration during which:
- The system loses most of its kinetic energy
- There is almost no deformation of the nuclei
. -1 _
(A= (M) b+ M) s

= —00 + 00)

- Unstable balance close to the lambda border

Full Langevin Dissipative Dynamics
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The fusion process

The three main stages of the collision:

1. Afirstviolent deceleration during which:
- The system loses most of its kinetic energy
- There is almost no deformation of the nuclei
. -1 _
(A= (M) b+ M) s

= —00 + 00)

- Unstable balance close to the lambda border

- Physical interpretation: (Extra)-deformation can only
occur when the fragments interact with each other

- Treated exactly (conservative forces).

Full Langevin Dissipative Dynamics
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Neck / Fusion
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The fusion process

2. The "Kiss of death” when friction starts
- Alittle sudden change in p,, - infinite push to

the scission line (1 = (Jvl‘pl)_lpp + (M) 'pa

= —%0 + )

- Deformation starts and remains.

Full Langevin Dissipative Dynamics
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The fusion process

2. The "Kiss of death” when friction starts
- Alittle sudden change in p,, - infinite push to

the scission line (1 = (]vl‘pl)_lpp + (M) 'pa

- Deformation starts and remains.

- Inherent instability of non-saturated nucleonic densities
(Sudden approximation in HF when the nuclear tails touch)

- This step is NOT treated numerically:
We start the calculation from the touching point

Full Langevin Dissipative Dynamics

V
Ry,

”Sudden approximation” — K. Pomorski, K. Dietrich
Z.Phys. A, 295 (1980) 335
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The fusion process

[ FUSION }

The three main stages of the collision: t

3. Along creeping motion
- which leads to fusion or separation
- Solved numerically

Neck / Fusion
)
O
QO
=
H
D

(@Xe)
NON-FUSION |
(O O

o

Distance / Separation

[ Friction starts (proximity) ]'/
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Defining fusing and non-fusing events

[ FUSION }

» Fusing conditions:

» A = 1 (half of the spheres are mixed)

» p(1—21) = A% (window angle fully open)
» P = 0.5

Neck / Fusion
)
O
QO
=
H
D

oXe

» Non-fusing conditions:

» Ao A, =1072 NON-FUSION J

> P~ Pmax =3 R

» No fusion after N,,,,,, = 500,000 steps. 5
Distance / Separation

[ Friction starts (proximity) ]'/
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The observables

» The resolution of the Langevin equations generates a distribution of trajectories due to the fluctuation force.
» We use 500,000 - 1,000,000 trajectories.

» Asymmetryis free to change.

» Calculations performed on the Ci$ cluster (Swierk/Warsaw).

» The spin distribution is calculated as a Monte-Carlo integral on a given bin i = #;:

5, — dO'qu _ 27-[82 leus
t de , % LNl_tot

i

where €, = imax\V/ X, X a random numberin [0,1] (for easy derived formulas).

» From the spin distribution, one can calculate:
» The total cross section / probability for the formation of the compound nucleus

> (£),(?)

» Excitation functions.
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64N + 92967y —> 156, 160Fy — Asymmetry fixed

12 ' 1 i 1 ' 1 N I T ' 1 °
. No Langevin force
— Sharp tail
o)
> ONi+2Zr: Qg e = Qps e — NO COrTection needed E
»  %Ni+2%Zr: Difference of 3.5 MeV — correction needed 2 - -
Effect of deformation? © neevin
asymmetry fixed
» Spin distributions are more natural with the Langevin force.
» Theydrop at the correct angular momentum Previous raw

— Relevant for a correct description of fission. calculations [

» The experimental data come from Refs. [2,3]

.
=
o
®
>
S
(@)
o}
3
®
2
o
=3

- e e e e e e e e

[1] W. Przystupa, K. Pomorski, Nucl. Phys. A572(1) (1994) 153
[2] W. Kuhn et al., Phy. Rev. Lett. 62 (1989) 1103
[3]A. M. Stefanini et al., Phys. Lett. B 252 (1990) 43

do/df(mb)

64N +927r - 156Er at E__=138.8 MeV
64Nj +%67r - 160Er at E__=139.5MeV
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64N + 92967y —> 156, 160y — Effect of the Asymmetry

» Therelease of the asymmetry decreases the spin
distributions (non-asymmetrical case)

» Greatagreement to the experimental datal23l,

» Inthe ®Ni+%%Zr case, little discreprancies in the spin
distributions, despite the energy correction

» Thetotal cross section (160 mb) is well reproduced.

[1] W. Przystupa, K. Pomorski, Nucl. Phys. A572(1) (1994) 153
[2] W.Kuhn et al., Phy. Rev. Lett. 62 (1989) 1103
[3]A. M. Stefanini et al., Phys. Lett. B 252 (1990) 43

Full Langevin Dissipative Dynamics

do/dZ(mb)

do/df(mb)

o N h~ O @

12 I 1 1
10l }.r‘; i No Langevin force
- | ' — Sharp tail
L
Langevin +
asymmetry fixed
J
™
Langevin +
- free asymmetry
12 . J
10} [ ‘.
' 1 (No energy correction) !

®4Ni +92Zr - 1°Er at E,,, = 138.8 MeV
®4Ni +%6Zr - 10FEr at E,, =139.5 MeV
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A deep understanding of the fusion process (Preliminary examples)

[ Asymmetry vs. time ] [ Angular momenta ]
160 10
140
120 0
100
» £ =20nh,
B0 -1 -10
Fusion case: i
40 1 -20
| rl
20 i
00 . . . . . . a0 . . . . . .
: 0 0 10 20 0 40 50 60 70 0 10 20 0 40 50 60 70
L1072 s) L10* 5)
1.0 160 .15 : . . . . . 10 T T T T
014 F 1
140 013 ] 0
0.8 012 B .
| 120 o1 [ ] a0k
(IR 9
> »B = SOh’ 06 H 100 &g‘; g 1 a0 f
. s 80 oot | - - a0 b
No-fusioncase: | o a b [ | M
. wl
10 (LIS 1
003 F 1
20 - oo | ] -0
I' i 0.01 ] 60 L L i L i
oo (:15 i L5 0 = "o 0 0w woos s ’ . woow ))40 o "
' ; : a ; L10%s) L1 s)

» And various other observables: diffusion tensor, the number of rotations the system udergoes before fusion etc.
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Summary and Perspectives

» We have derived a fully 6-dimensional dissipative dynamics Langevin-based formalism to describe the
unrestricted motion of the systems in terms of elongation, neck and asymmetry variables.

» Thanks to a correct treatment of the different stages of fusion, the spin distributions are now in great agreement
with experimental data.

» The Langevin formalism allows for a deep understanding of the fusion process: evolution of the asymmetry,
angular momentum/rotations of the fragments etc.

» Inthe future:
»  We will study the effect of the asymmetry of entrance channel on the formation of the compound system.
» We will tackle the hindrance problem by comparing the ¥Ca/>°Ti/>*Cr + 2°8Pb systems.

» We are planning to make the following improvements of the formalism:
» The addition of shell effects for a fully microscopic-macroscopic picture
» The testing of different forms of stochastic noises (color noises),
» Theincorporation of neutron emission throughout the process.
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Summary and Perspectives

» We have derived a fully 6-dimensional dissipative dynamics Langevin-based formalism to describe the
unrestricted motion of the systems in terms of elongation, neck and asymmetry variables.

» Thanks to a correct treatment of the different stages of fusion, the spin distributions are now in great agreement
with experimental data.

» The Langevin formalism allows for a deep understanding of the fusion process: evolution of the asymmetry,
angular momentum/rotations of the fragments etc.

» Inthe future:
»  We will study the effect of the asymmetry of entrance channel on the formation of the compound system.
» We will tackle the hindrance problem by comparing the ¥Ca/>°Ti/>*Cr + 2°8Pb systems.

» We are planning to make the following improvements of the formalism: “\( Vo “0‘ \
» The addition of shell effects for a fully microscopic-macroscopic picture 1\‘\3 n '\0“ -
» The testing of different forms of stochastic noises (color noises), 0\-“ a“e
» Theincorporation of neutron emission throughout the process. 1
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