Reakcje wielonukleonowego transferu i fragmentacji w zderzeniach niefuzyjnych układów jądrowych

Т. Сар

NATIONAL CENTRE FOR NUCLEAR RESEARCH ŚWIERK

- Fizyka reakcji jądrowych przy niskich i pośrednich energiach bombardowania, $E_{Coulomb} < E_{Pocisk} < E_{Fermi}$
- Układy niefuzyjne: $P + T \not\rightarrow CN^*$

Brak formalnej definicji \rightarrow układy dla których $P_{fusion} \ll 1$ ($P_{fusion} \approx 0$)

Głównie symetryczne, bardzo ciężkie układy, typu:

 $\label{eq:238} \begin{array}{ll} & 2^{238}_{92}U+^{238}_{92}U, & 2^{08}_{82}Pb+^{197}_{79}Au, \\ \\ \text{ale również} \ ^{136}_{54}Xe+^{136}_{54}Xe \ (\textit{P}_{\textit{fusion}}\approx 10^{-6}), \ \text{czy np.} \ ^{238}_{92}U+^{64}_{28}Ni \end{array}$

- Transfer masy i energii \rightarrow Słabo zbadane kanały rozpadu

W. U. Schröder and J. R. Huizenga,

W. U. Schröder and J. R. Huizenga,

W. U. Schröder and J. R. Huizenga,

Dostęp do małych *b* Obszar zderzeń centralnych

- Zderzenia silnie tłumione
- $P + T \rightarrow PLF^* + TLF^*$
- Dłuższy czas oddziaływania (orbitowanie)
- Znaczna dyssypacja energii ruchu względnego P + T
- Masywny transfer nukleonowy
- Duże deformacje, spiny i E*
- Sekwencyjne rozpady *PLF** i *TLF**
- Procesy nierównowagowe

¹²⁹Xe+^{nat.}Sn @GANIL, INDRA Fragmenty o $Z \ge 10$ Średnia krotność LCP w zdarzeniach z 3 fragm. @8A MeV: $< M_D > \approx 1$ $< M_{\alpha} > \approx 1$ @25A MeV: $< M_p > \approx 5.5$

 $< M_{\alpha} > \approx 6$

Procesy sekwencyjne \rightarrow Procesy dynamiczne D. Gruyer *et al.*, Phys. Rev. C 92, 064606 (2015)

V. I. Zagrebaev and W. Greiner, PRC 83, 044618 (2011)

Transfer 10+ nukleonów Wzrost transferów z energią

J.V.Kratz et al. PRC 88, 054615 (2013)

Yuri Oganessian SHE-2017, Sept. 10-14, 2017, Kazimierz Dolny, Poland

A. S. Umar, et al. (3D) TDHF, 2016

- Fragmentacja pocisku (PLF) produktu reakcji wielonukleonowego transferu
- Fragmenty rozszczepienia PLF mogą być wysoce neutrono-nadmiarowe

Możliwy dostęp do:

- jąder istotnych dla astronomicznego procesu *r*
- jąder z okolic linii oderwania neutronu

Model DIT/SMM

N. Vonta et al., PRC 94, 064611 (2016)

Wyzwania:

- Brak danych doświadczalnych
- Słabo zbadane mechanizmy produkcji fragmentów końcowych
- Małe przekroje czynne
- · Identyfikacja fragmentów o niskich energiach

Reakcje Au + Au @23A MeV oraz @15A MeV

I. Skiwra-Chalot *et al.*, PRL 101, 262701 (2008) J. Wilczyński *et al.*, PRC 81, 024605 (2010) J. Wilczyński *et al.*, PRC 81, 067604 (2010)

- Badania mechanizmu reakcji
- Określenie wkładu od procesów nierównowagowych
- Skala czasowa procesów
- Rozwój modeli teoretycznych i lepsze zrozumienie dynamiki zderzeń ciężkich i symetrycznych układów jądrowych

Multidetektor CHIMERA

Multidetektor CHIMERA (INFN LNS, Catania) Charged Heavy Ion Mass and Energy Resolving Array

1192 teleskopy Si–CsI(Tl) Geometia 4π Identyfikacja Δ E-E & TOF

Multidetektor CHIMERA (INFN LNS, Catania) Charged Heavy Ion Mass and Energy Resolving Array

S

Multidetektor CHIMERA (INFN LNS, Catania) Charged Heavy Ion Mass and Energy Resolving Array

Sfera: 17 pojedyńczych pierścieni 504 teleskopy, $30^{\circ} < \theta_{LAB} \le 176^{\circ}$

Identyfikacja fragmentów

Identyfikacja fragmentów

Metoda TOF

T.Cap et al., Phys. Scr. T154, 014007 (2013)

Metoda ∆E-E

Rejestracja produktów reakcji w trybie event-by-event

Wielkości mierzone:

- krotność fragmentów naładowanych \rightarrow 2,3,4,...
- kąty emisji każdego z fragmentów w układzie LAB $\rightarrow \theta, \phi$
- energie fragmentów \rightarrow od kilku MeV do 4,5 GeV
- liczba masowa A i liczba atomowa Z fragmentów (określane na podstawie identyfikacji TOF lub Δ E-E, dokładność kilku %)

Charakterystyka reakcji ¹⁹⁷Au + ¹⁹⁷Au

Zdarzenia kompletne:

ſ	335	\leq	A _{SUM}	\leq 394
	0.85	\leq	<i>р_{SUM}/р</i> 0	≤ 1.00

Zdarzenia kompletne:

ſ	335	\leq	A _{SUM}	≤ 394
	0.85	\leq	p _{SUM} /p ₀	≤ 1.00

Schemat reakcji binarnych

Au + Au \rightarrow PLF* + TLF* \rightarrow PLF + TLF + cz.wyp. PLF - fragment pocisko-podobny TLF - fragment tarczo-podobny

NARODOWE CENTRUM BADAŇ JĄDROWYCH ŚWIERK

Schemat reakcji binarnych

Au + Au \rightarrow PLF* + TLF* \rightarrow PLF + TLF + cz.wyp. PLF - fragment pocisko-podobny TLF - fragment tarczo-podobny

ARODOWE CENTRUM BADAŃ JĄDROWYCH

Reakcja dwustopniowa: Au + Au \rightarrow PLF* + TLF*

Reakcja dwustopniowa:

 $Au + Au \rightarrow PLF^* + TLF^* \rightarrow PLF + T1 + T2$

Reakcja dwustopniowa: Au + Au \rightarrow PLF* + TLF*

Reakcja dwustopniowa:

 $Au + Au \rightarrow PLF^* + TLF^* \rightarrow P1 + P2 + TLF$

Reakcje z trzema fragmentami - emisja z szyjki

Niezrównoważony, szybki podział na trzy fragmenty:

Au + Au \rightarrow PLF + TLF + IMF IMF - fragment o masie pośredniej

State State

Reakcje z trzema fragmentami - emisja z szyjki

Niezrównoważony, szybki podział na trzy fragmenty: $Au + Au \rightarrow PLF + TLF + IMF$ IMF - fragment o masie pośredniej

Reakcje z czterema i więcej fragmentami

 $\begin{array}{l} \mathsf{Au} + \mathsf{Au} \rightarrow \mathsf{PLF}^* + \mathsf{TLF}^* \rightarrow \mathsf{P1} + \mathsf{P2} + \mathsf{T1+T2} \\ \mathsf{Au} + \mathsf{Au} \rightarrow ... \rightarrow \mathsf{P1} + \mathsf{P2} + \mathsf{TLF} + \mathsf{IMF} \end{array}$

 $\begin{array}{l} \mathsf{Au} + \mathsf{Au} \rightarrow \mathsf{PLF}^* + \mathsf{TLF}^* \rightarrow \mathsf{P1} + \mathsf{P2} + \mathsf{T1+T2} \\ \mathsf{Au} + \mathsf{Au} \rightarrow ... \rightarrow \mathsf{P1} + \mathsf{P2} + \mathsf{TLF} + \mathsf{IMF} \end{array}$

Mamy (co najmniej) trzy typy reakcji z trzema ciężkimi fragmentami w stanie końcowym:

 $\begin{array}{l} \mathsf{Au} + \mathsf{Au} \rightarrow \mathsf{PLF}^* + \mathsf{TLF}^* \rightarrow \mathsf{PLF} + \mathsf{T1} + \mathsf{T2} \\ \mathsf{Au} + \mathsf{Au} \rightarrow \mathsf{PLF}^* + \mathsf{TLF}^* \rightarrow \mathsf{P1} + \mathsf{P2} + \mathsf{TLF} \\ \mathsf{Au} + \mathsf{Au} \rightarrow \mathsf{PLF} + \mathsf{TLF} + \mathsf{IMF} \end{array}$

Reakcja Au + Au jest symetryczna, więc rozpady

 $\begin{array}{l} PLF^* \rightarrow P1 + P2 \\ TLF^* \rightarrow T1 + T2 \end{array}$

przebiegają identycznie.

Koncentrujemy się na rozpadzie fragmentu pocisko-podobnego

 $PLF^* \rightarrow P1 + P2$

• Fragmentację szyjki traktujemy w sposób uproszczony (jako szybki proces sekwencyjny):

$PLF^* = (PR + IMF)^* \rightarrow PR + IMF$

gdzie: PR - pozostałość pocisku (PR+IMF) - układ krótkożyjący

Badamy proces: $PLF^* \rightarrow F1 + F2$

- Selekcja kinematyczna fragmentów F1 i F2
- Rekonstrukcja kinematyczna PLF*
- Wielkości charakteryzujące pierwszy krok reakcji:

$Au + Au \rightarrow \textbf{PLF}^* + \textbf{TLF}^*$

określane są na podstawie praw zachowania

F1 + F2→PLF

A_{F1} - masa cięższego fragmentu
A_{F2} - masa lżejszego fragmentu

Parametr symetrii:

$$f = \frac{A_{F2}}{A_{F1} + A_{F2}}$$

f = 0.5 oznacza podział symetryczny

F1 + F2→PLF

 A_{F1} - masa cięższego fragmentu A_{F2} - masa lżejszego fragmentu

Parametr symetrii:

$$f = \frac{A_{F2}}{A_{F1} + A_{F2}}$$

f = 0.5 oznacza podział symetryczny

Lokalizacja w przestrzeni momentu pędu kanału wejściowego

 $F1 + F2 \rightarrow PLF$ Prawa zachowania $\rightarrow TLF$

Odtwarzanie PLF*, TLF* (procedura iteracyjna, "odwrócona" ewaporacja)

Całkowita energia kinetyczna: $TKE^* = E_{PLF^*} + E_{TLF^*}$

 $R_{Au} \approx 7 \text{ fm} (TKE^* \approx 800 \text{ MeV})$

Kanały podziału

Kanały podziału

 $... \rightarrow \mathsf{IMF} + \mathsf{PR}$

Kanały podziału

• Proces fragmentacji szyjki jest procesem konkurencyjnym do fragmentacji PLF* w całym zakresie $TKE \rightarrow$ trzeba go uwzględniać w modelach.

• Wkład od procesu fragmentacji szyjki > 20% dla TKE < 1700 MeV.

Rzut na płaszczyznę reakcji

\$\phi_{in-plane}\$ - kąt emisji IMF
w płaszczyźnie reakcji,
liczony względem osi separacji

Vviola - prędkość względna fragmentów rozszczepienia

 $T = \frac{\Delta \phi_{in-plane}}{\omega} = \Delta \phi_{in-plane} \times \frac{I}{J}$ 6000 (a1) $0.10 < f \le 0.15$ 5000 $\Delta \phi_{in-plane}$ - średni obrót układu (IMF+PR) 4000 od pierwszego do drugiego podziału 3000 3000 (z dopasowania do danych) 2000 I - moment bezwładności układu (obliczony) 1000 0 -180 -120 J - spin układu (z modelu HICOL) -60 120 180 0 60 $\phi_{in-plane}$ (deg.) PR+IMF PR IMF TR TR First scission, T = 0Second scission

Średni czas od podziału binarnego do oderwania szyjki jest w przybliżeniu taki sam dla wszystkich symetrii podziału i nie zależy od *TKE*.

$$< T >= (230 \pm 40) \text{ fm/c} = (7.7 \pm 1.3) \times 10^{-22} \text{ s} = (0.77 \pm 0.13) \text{ zs}$$

Podziały o większej symetrii Przykład dla $b \approx R_{Au}$

- Silne efekty kulomowskie rozkłady kątowe nie są płaskie
- Pojawiają się inne nierównowagowe procesy
- Wraz ze wzrostem *b* rośnie wkład procesów zrównoważonych, a maleje rola procesów dynamicznych
- Proces fragmentacji szyjki dla cieżkich fragmentów, $A_{IMF} \approx 50$!

Obliczenia w ramach modelu QMD $^{197}Au + ^{197}Au \rightarrow PLF^* + TLF^* + cz. wyp.$

Model Kwantowej Dynamiki Molekularnej

J. Łukasik and Z. Majka, Acta Phys. Pol. B 24, 1959 (1993)

Zdarzenia binarne (kompletne) z eksperymentu $^{197}Au + ^{197}Au \rightarrow PLF + TLF + cz.$ wyp.

Nie ma chłodnych PLF dla mniejszych b

Rekonstrukcja: F1 + F2 \rightarrow PLF $A_{F1}, A_{F2} \ge 45$

Mniejsze b - większa wyparowana masa

Rekonstrukcja: F1 + F2 → PLF

masa PLF* odtworzona iteracyjnie ("odwrócona" ewaporacja)

Transfery kilkudziesięciu nukleonów

Podsumowanie

- Układ Au+Au daje możliwość badania nierównowagowych procesów.
- Analiza skoncentrowana była na zdarzeniach z trzema ciężkimi fragmentami (>⁷Li) w stanie końcowym.

Dla procesu fragmentacji szyjki pokazano, że:

- jest to proces konkurencyjny do fragmentacji pocisku w całym zakresie *TKE*,
- wkład od tego procesu wynosi około 20%,
- skala czasowa jest w przybliżeniu taka sam dla wszystkich symetrii podziału, nie zależy od *TKE* i wynosi (230 ± 40) fm/c,
- masy fragmentów IMF sięgają 50 jednostek masowych.
- Wielonukleonowe transfery zachodzą do stanów wzbudzonych fragmentów pierwotnych (PLF* lub TLF*).
- Chłodne fragmenty o masie znacznie przekraczającej masę Au nie są obserwowane.

Reakcje wielonukleonowego transferu i fragmentacji w zderzeniach niefuzyjnych układów jądrowych

T. Cap, K. Siwek-Wilczyńska, J. Wilczyński, F. Amorini, L. Auditore, G. Cardella, E. De Filippo, E. Geraci, L. Grassi, A. Grzeszczuk, E. La Guidara, J. Han, T. Kozik, G. Lanzalone, I. Lombardo, R. Najman, N. G. Nicolis, A. Pagano, M. Papa, E. Piasecki, S. Pirrone, R. Płaneta, G. Politi, F. Rizzo, P. Russotto, I. Skwira-Chalot, A. Trifiró, M. Trimarchi, G. Verde, W. Zipper

