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The aim of these lectures:

1) What is a direct reaction?

2) Why should we study them?

3) How do we interpret them?



  

16O + 208Pb 18O + 184W



  

A reaction is called direct if it proceeds directly
from the initial to the final state without the 
formation of an intermediate compound nucleus
(it takes place in one or “a few” steps)

Direct reactions are fast, compound reactions 
are slow 

We are already in trouble: what do we really mean
by “a few”, “fast” and “slow”?



  

The time scale is most easily quantified: we judge
fast or slow relative to the motion of nucleons in
the nucleus

Typically, a nucleon will take about 10-22 s to orbit
a nucleus, and if the reaction takes place within this
time scale or less, it is considered direct

Formation of a compound nucleus requires a much
longer interaction time, >> 10-22 s

In reality the distinction is not so clear cut and the
two extremes shade into each other



  

As for the number of steps involved, the distinction
is even less clear-cut.

A single-step reaction is clearly direct, but …

As the projectile interacts successively it penetrates
the target more deeply until eventually a compound
nucleus is formed. However, the reaction may
terminate after only a few interactions. Is this still
direct? The distinction is often largely a question of
personal taste.



  

Finally, direct reactions tend to be peripheral, i.e.
they take place at the nuclear surface

Even this is not always true, since the nucleus is
almost transparent to incident nucleons and direct
reactions involving neutrons and protons as
projectiles can occur inside the nucleus



  

What are the different types of (direct) reaction?

Some nomenclature:

We write a reaction thus:

A + a → B + b + Q

A is the target, a the projectile, B the residual, b the 
ejectile and Q is the “Q value”.

This is written more concisely as:

A(a,b)B



  

Each possible combination of particles is referred
to as a partition. Further, within a partition we may
specify the state of excitation of each nucleus.
Such a pair of nuclei each in a specific state is
known as a channel. Each partition can in principle 
consist of many channels.

Thus the combination A + a is known as the
entrance channel (both nuclei are in their ground
states). The various possible sets of products B
and b in their specific excitation states constitute
the exit channels.



  

The Q value is simply the energy released during
the reaction. It is most simply defined as:

Q = E
f
 − E

i

If the Q value is negative the reaction is termed
endothermic, i.e. the final total kinetic energy is 
less than the initial.

If the Q value is positive we have an exothermic
reaction, and binding energy (or rest mass) is
released during the reaction

For negative Q, there is a threshold energy since
E

f
 must be > 0, E

i
 = E

th
 = −Q



  

Back to the various classes of (direct) reaction …

1) Elastic scattering. The simplest “reaction”. The
internal states of a and A are unchanged and Q = 0.
Written as: A(a,a)A

2) Inelastic scattering. Usually, this term is applied
to a reaction where A is left in an excited state, i.e.
B = A* and therefore Q = − E

x
. a is then emitted

with reduced energy and the reaction is written as:
A(a,a′)A*. 
For complex projectiles a may be excited instead 
of the target or both a and A may be left in excited 
states (mutual excitation).



  

3) Transfer reactions. Here B ≠ A and b ≠ a, there
has been a rearrangement (transfer) of nucleons
between target and projectile. 
Two sub-groups, conventionally defined in terms 
of the projectile: 
Stripping ─ a nucleon or nucleons is transferred 
from the projectile to the target
Pickup ─ a nucleon or nucleons is transferred from
the target to the projectile
Examples: 

Stripping: 208Pb(d,p)209Pb

Pickup: 208Pb(p,d)207Pb



  

4) Breakup. This is no longer a simple two-body
process but (usually) a three-body one:

A(a,a*→b + c)A

i.e. a is excited to a “state” (either a resonance or
the continuum) above the emission threshold for
particle c (a is considered to consist of particle c
bound to core b)

Example: 6Li* → α + d

Four-body (or more) breakup modes can also occur,
e.g. 6He → α + n + n



  



  

These are the direct reactions that we shall discuss
in these lectures. However, for light ions (nucleons
in particular) even these reactions can have a
compound component:



  

A particular case is so-called compound elastic
scattering. This is only a problem for low-energy
nucleon elastic scattering:

Compound elastic scattering 
occurs when, after formation of 
the compound nucleus in an 
excited state, a proton (in this 
case) is emitted with the same 
energy as the incident proton. 
As the incident energy 
increases this process rapidly 
becomes less likely, so we only 
have to consider it at low 
energies. Fortunately, 
compound and shape elastic 
(the direct scattering process) 
do not interfere and can be 
analysed separately.



  

Finally, if the projectile has exactly the right energy
resonant behaviour can occur (usually only in
elastic or inelastic scattering). This is not confined
to nucleons or light ions, it can also occur for the
lighter heavy ions (a heavy ion is by convention 
anything heavier than an α particle). However, it 
usually only occurs at low incident energies and
we shall not consider it further here.



  

Having defined what we mean by a direct reaction
and described the various types that we are
interested in, a word about what we actually measure

What are the observables?

1) A spectrum: we measure the energy of the outgoing
    particle(s) as a function of the scattering angle:



  

2) We can count the number of outgoing particles
     (of a particular type) either in total or as a function
     of angle. This is usually reduced to a 
     “standardised” number, the cross section

Remember that any other “experimental” quantities 
are in fact derived from these observables using 
models



  

How is cross section defined? Although it has units
of area (usually measured in barns ― symbol b, 
1b = 10-28 m2 ― or sub-multiples thereof in nuclear 
physics) it is really a measure of the probability that 
a particular reaction will occur.

Returning to our typical reaction A(a,b)B. If we have
I
0
 particles of type a per unit area incident on a 

target containing N particles of type A then the 
number of particles b that we detect is obviously
proportional to I

0
 and N, the constant of 

proportionality being the cross section, σ:

σ = number of particles b detected
      I

0
 x N



  

If we count the number of particles b in the solid
angle element dΩ in the direction (θ,φ) with 
respect to the beam direction it is proportional
to dΩ as well as I

0
 and N and the constant of

proportionality is the differential cross section
dσ/dΩ (usually measured in units of mb/sr):



  

In fact, unless the beam is polarised dσ/dΩ does
not depend on the azimuthal angle φ and is 
sometimes written: σ(θ)

The two kinds of cross section are clearly related:

If dσ/dΩ is independent of φ then:



  

In direct reaction work we usually measure the
angular distribution of the differential cross section,
since this contains most of the information (as we
shall see later on).

However, sometimes the cross section σ is measured.
If we measure σ for each type of particle emitted in a
non-elastic process this is called the reaction cross
section. If we then add σ

el
 to this number we obtain

the total cross section, a measure of the probability
that something will occur during the collision

The reaction cross section, σ
R
, is the most useful of

these quantities and we shall meet it again later.



  

Finally, a word about books:

Introduction to Nuclear Reactions, G. R. Satchler
two editions, 1980 and 1991 (paperback). Still the
best introduction to the subject but long out of print
and difficult to find.

Direct Nuclear Reactions, G. R. Satchler, OUP 1983.
Long out of print and very difficult to find. Still a very
good monograph on the subject.

Nuclear Reactions and Nuclear Structure, 
P. E. Hodgson, OUP 1971. Also long out of print and
difficult to find. A good monograph on light-ion 
induced reactions and their analysis.



  

Nuclear Reactions for Astrophysics: Principles, 
Calculation and Applications of Low-Energy 
Reactions, I. J. Thompson and F. M. Nunes, CUP
2009. Perhaps the best of the in-print books on the
subject. Linked to practical use of the direct reaction
code FRESCO.



  

Lecture 2: Kinematics

“Kinematics” covers a multitude of sins. In this lecture
we shall define some more quantities that will be
useful later and look at the consequences of some
conservation laws.



  

Experiments are (naturally enough …) performed in
the laboratory reference frame. However, we usually
transform to the centre of mass (CoM) frame before
we attempt to analyse the data:

Why do we do this?



  

It makes life easier! One conserved quantity in a
nuclear collision is the total momentum. We thus
chose a reference system where the total 
momentum is 0 – the centre of mass system. 

Here, the centre of mass of the projectile-target 
system is at rest and the projectile and target
approach each other with equal and opposite
momenta: P′

a
 = −P′

A        
. Since total momentum is

conserved, P′
b
 = −P′

B
 if there are only two products.



  

We mentioned briefly in the first lecture the Q value
as the energy released in a reaction. Since the total
energy is conserved, Q = E

i
 – E

f
. This may also be

written in terms of the rest masses or the binding 
energies of the particles involved:

mA + ma = mB + m
b
 + Q/c2

BA + Ba = BB + Bb − Q

If Q is negative, e.g. inelastic excitation of 16O 3− 
(6.13 MeV) by protons, then we require a minimum 
kinetic energy of the proton of 6.13 MeV in the centre
of mass frame for the reaction to proceed



  

The kinetic energy of the motion of the centre of mass 
of the system is conserved and is therefore not 
available for producing nuclear excitations: advantage
of CoM system is that it is zero (CoM at rest, by
definition) so we do not need to worry about it!

Other conserved quantities are total charge, number
of neutrons and protons (in the reactions we will
consider; it is not always so), the parity and the total
angular momentum. Any change in the total (vector
sum) of the intrinsic spins of the nuclei must be 
compensated for by a change in the orbital angular
momentum of their relative motion. Likewise for the
product of their intrinsic parities.



  

Although not really a “kinematical” quantity we shall
briefly discuss here the Coulomb barrier.

There are almost as many (slightly) differing definitions
of this quantity as there are nuclear physicists!

A good working definition is the value of the Coulomb
potential for two touching charged spheres with the 
same charges as the colliding nuclei:

EB = Z1 Z2
 e2 

      R1 + R2

with R = 1.16 A1/3 + 1.2 fm



  

To define some other useful quantities we consider a
classical orbit (most useful for heavy ion projectiles) 

b is the impact parameter, d the distance of closest 
approach and θ the CoM scattering angle



  

For scattering from a purely Coulomb potential (i.e.
as in Rutherford scattering) we have:

b = a cos ½ θ

and

d = a (1 + cosec  ½ θ)

where 

a = Z1 Z2 e
2/mv2 

or, a = d0/2 where d0 = d for a head-on collision (b=0)



  

For the general case of a particle scattered by a 
central potential V(r) (which will be the sum of a
nuclear and a Coulomb potential) the relation 
between θ and b ― the classical deflection function
― becomes:

rmin is the distance of closest approach, i.e. the 
value of r that reduces the expression:

to zero.



  

Some other useful quantities for Coulomb orbits are:

the Sommerfeld parameter, n.

k = 1/ƛ = (2mE/ħ2)1/2 ≈ 0.2187[m(u)E(MeV)]1/2 fm-1

the wave number, k (note that momentum = ħk).

L = n cot (½ θ) = kb

the angular momentum of the projectile about the
target (in units of ħ).



  

For heavy ions the concept of the critical or grazing
angle, θc, is useful (as we shall see later in these
lectures). 

θc is defined as the scattering angle for the orbit
where the nuclear surfaces just touch. Since the 
nuclear forces fall off very rapidly beyond the nuclear
surface we may use the relations for Coulomb orbits
with little loss of precision (for heavy ions)

If R is the sum of the nuclear radii, then we have:

R = a (1 + cosec ½θc)

If we substitute for a, and recall that E = ½ mv2:



  

where we have substituted R = r0 (A1
1/3 + A2

1/3).

One could of course use more sophisticated 
expressions for R. We shall see later that one can
also extract “empirical” values for θc from data and
that θc is a useful parameter in heavy-ion reactions.



  

All these definitions are based on classical concepts.
This is a reasonable approximation provided that:

n >> 1

This condition is often satisfied for heavy ions 
(particularly at low energies) because they are 
massive and carry large charges.

We can further refine these ideas to include some
quantum concepts and produce semi-classical
theories. Some of these concepts are nevertheless 
useful even for light-ion induced reactions …



  

For example, the impact parameter, b. Recall that:

b = a cos ½ θ

Therefore, small impact parameters (head-on or
near head-on collisions) correspond to large 
scattering angles:



  

Lecture 2: Scattering theory

The full quantum mechanical treatment of scattering.
The classical and semi-classical treatments have 
their uses (as we have just seen) but we need to cover 
the essentials of the quantum mechanical theory here
since it underlies the analysis methods we shall 
describe later.

Those interested in going further are referred to the
books by Satchler (Direct Nuclear Reactions), Austern
(Direct Nuclear Reaction Theories, Wiley 1970) and
Glendenning (Direct Nuclear Reactions, Academic
Press 1983 or World Scientific 2004).



  

Our goal in the theoretical analysis of direct reaction
data is to calculate a differential cross section. To do
this we need to solve the appropriate Schrödinger
equation. For a single particle of mass m (and no
internal degrees of freedom) scattered by a potential
V(r) it is: 

Outside the region where V acts E is the kinetic energy
We may rewrite this in the simplified form:

where H is the Hamiltonian for the system



  

We may also re-write the equation in the following
more convenient form:

where U = 2mV/ħ2. For V = 0 the solution is a plane
wave χ = exp(ik.r)

This equation still holds for the interaction of two
complex nuclei a and A if we interpret r as rα, the
distance between their centres of mass and replace
m with the reduced mass μα = mamA/(ma + mA),
provided V cannot change the internal states of a
and A (i.e. only elastic scattering can occur)



  

This is a somewhat artificial situation of course. 
Usually V can not only excite either or both of a 
and A but can also lead to a rearrangement reaction
to give two different nuclei b and B.

We may define internal Hamiltonians for a and A:

Ha ψa = εa ψa, HA ψA = εA ψA 

The total Hamiltonian then becomes:

or, H Ψ = E Ψ



  

The ψa and ψA form complete sets, so we may 
expand the total wave function Ψ as follows:

Substituting back into the Schrödinger equation,
multiplying from the left by ψa*ψA* and integrating over
the internal coordinates we get (putting it into the form 
with U(rα) and k):

where: kaA = 2μα (E − εa − εA)/ħ2



  

We have introduced here the matrix elements of the 
interaction potential Vα:

The integrations are only over the internal coordinates 
τa and τA. 

The diagonal element is on the LHS and the 
off-diagonal elements on the RHS in our example. The 
LHS by itself describes elastic scattering only; the RHS 
describes the inelastic scattering and its effect on the 
elastic scattering.



  

Similar equations exist for all pairs a′A′ obtained by 
the same procedure but with ψa'*ψA'*. There is thus
an infinite set of coupled equations, one for each
pair a,A (each channel).

Since we obviously cannot solve an infinite set of
such equations, we truncate by including only those
channels that we know (or guess) to be strongly
coupled. The rest are either neglected or we 
represent their effect by a complex optical potential.

It is at this point that models enter and we have the
coupled channels (CC) method.



  

This is fine for inelastic scattering, and it could also 
be used for rearrangement (transfer) reactions.

However, in practice this is not feasible since it
would require a very large number of states a′,A′
so other techniques are used for these reactions.

Finally (in this lecture!) how do we calculate the cross
section once we have the wave function? By applying
appropriate boundary conditions we can define the
scattering amplitude:



  

We then define the differential cross section as:

It may look as if this doesn't help much, since  we
still do not know what χ(r′) is in ƒ(θ,φ). However, 
it does provide a very good starting point for
approximations, as we shall see next time.



  

Lecture 3: Scattering theory continued

Last time we saw that we may calculate the differential
cross section from the scattering amplitude, which 
may be formulated thus:

where k′ is the momentum of the outgoing particle.

As we noted last time, this is only a formal solution
of the problem since we still don't know χ(k,r′)



  

However, we are now in a position to produce
approximate solutions to the scattering problem.

In the simplest case, if potential V is weak we may
approximate χ(k,r′) by the incident plane wave:

where q = k − k′ is the change in momentum of the 
scattered particle (ends up as recoil of the target) 



  

This is the plane wave Born approximation (also
known as Butler theory). No longer used, it has
been replaced by the somewhat more sophisticated
distorted wave Born approximation (DWBA).

This time, to obtain an approximation for χ(k,r′) we
assume that U may be written U = U1 + U2 and that
we can obtain the scattering solution for U1:

We consider two types of solution,  χ1
(+)(k,r) and

χ1
(−)(k,r), consisting of plane waves plus outgoing and

ingoing scattered waves respectively.



  

We may then find a solution of the full (U = U1 + U2)
problem in terms of these χ1

(±):

This is still only a formal (exact) solution. If we now
replace χ with χ1 (the solution for U1) we get:

This will be a good approximation when U2 is weak 
compared to U1



  

This approximation may be generalised to inelastic
and transfer reactions. We choose U1 (and thus ƒ1)
to describe the elastic scattering and U2 is then the
interaction inducing the non-elastic transition. Thus
DWBA is valid if elastic scattering dominates and
other events can be treated as perturbations.

As an example, the DWBA transition amplitude for
the reaction A(a,b)B has the form: 

Where we have generalised χ1 to χα and χβ, the solutions for elastic
scattering in entrance and exit channels from potentials Uα and Uβ



  

Finally, a few words on partial wave expansion. The
relative angular momentum of two colliding particles,
ℓћ, is quantised in units of ћ. Since nuclear forces are
short ranged and nuclei have reasonably sharp edges
only particles with angular momentum less than some
maximum value interact with the target. This can be
quite small (for protons, as little as ℓ = 10 – 15). 

If we have a central potential (usual in nuclear 
reactions) angular momentum is conserved and we 
may write:



  

The Schrödinger equation then separates into radial
and angular equations. We may most easily write the
radial equation in terms of wℓ(r) = r uℓ(r):

This enables us not only to truncate our partial wave 
series (although in some heavy ion reactions we may
still need several hundred) but it also reduces the
three dimensional Schrödinger equation to a series 
of one dimensional radial equations.



  

Lecture 3: elastic scattering and the optical model

We now begin the main subject of these lectures: how
do we interpret direct reactions and why should we
study them?

We start with the most fundamental process, elastic
scattering. It is always present, so any direct reaction
theory must take account of it in some way. Here we
consider the simplest theory of elastic scattering, the
optical model, which treats elastic scattering alone.



  

The optical model replaces the full scattering problem
with that for scattering by a (complex) potential, the
simplest case we considered in our brief look at
scattering theory.

The optical potential must be complex to account for
absorption into other reaction channels that we do
not treat explicitly.

It is possible formally to construct an optical potential
of this type from the full problem in scattering theory
(usually referred to as “Feshbach Theory”). However,
in practice it is virtually impossible to calculate such
a potential which is in any case non-local and 
L-dependent.



  

Instead, we take the practical approach and consider
an empirical optical model potential which is local
and L-independent.

Our OMP will be of the form:

U(r) = V(r) + i W(r) + VC(r)

where VC(r) is the Coulomb potential for a uniformly
charged sphere of radius RC:

Rc is typically 1.3 x AT
1/3 or 1.3 x (AI

1/3 + AT
1/3)



  

How do we choose the nuclear potential? Nuclear
forces are short-ranged, therefore we expect them
to drop off sharply outside the nucleus — square
well? Too abrupt; a well with rounded edges?

Fermi distribution, known in the direct reaction world
as the Woods-Saxon distribution:

so that the nuclear part of the OMP becomes:



  

In this form we have four adjustable parameters:
V, W, R and a. However, there is no a priori reason 
why R and a need be the same for the real and 
imaginary parts of the potential, so we can have up 
to six parameters to be determined.

This is the usual form employed in analyses of
heavy ion elastic scattering data. However, it is
normally found that only three parameters need be
varied (for a given system): V, W and aW (more on
this later).

For nucleons and other light ions we usually go a
little further:



  

From theoretical considerations the absorption is
expected to be surface peaked, so it has become
common to replace W(r) with such a term or to
add a surface imaginary term to the volume one.

This may take many forms, e.g. a Gaussian, but
the most common is the derivative Woods-Saxon:

This has a peak value of −WD at r = RD (hence the 
factor of 4). Note negative real and imaginary 
potentials are attractive and absorptive respectively.



  

Finally, if the projectile has spin there will be (in
principle) a spin-orbit potential. While this can
affect the elastic scattering cross section angular
distribution for nucleons it is “best practice” to
include it only when analysing power data are
available (polarised beam). For heavy ions it is
omitted unless this is so.

Usually we take the so-called Thomas form:

and σ = 2 s for nucleons, tritons and 3He, 
       σ = s for deuterons



  

In practice, WSO is usually set to zero, since fits 
to most data sets are not improved by the addition
of an imaginary spin-orbit term.

We therefore arrive at the final complete form of
the optical model potential for light ions:



  

This gives us a total of 12 adjustable parameters
(if we fix RC: the results are usually insensitive to 
the exact value). Rather too many? Sometimes 12
are not enough (we shall come back to this later!)

We can limit the number of variables in practice.
We usually parameterise the radius as:

or for heavy ions as:



  

This removes the “trivial” dependence on mass 
number and we can often fix the ri for a wide range
of nuclei (so although in principle r0, rW, rD and rSO

could all have different values they remain fixed).
“Typical” values for nucleons are ri = 1.15 fm or
1.25 fm. Often r0 and rSO will be fixed at the same
value, with rW and rD fixed at a different value.

It has been found from a large number of analyses
that the OMP parameters for a given projectile +
target combination vary as a function of bombarding
energy. This is true for both nucleons and other light
ions and heavy ions, although it can be difficult to
prove this for the latter.



  

The reasons are, however, different. Recall that the
formal optical potential is both non-local and 
L-dependent. While it is always possible to find a
local equivalent to such a potential (with some
consequences that we will come back to when we
look at transfer reactions) this introduces an energy
dependence into the local equivalent potential.

For nucleons this energy dependence is dominated
by the non-locality introduced by exchange effects.

For heavy ions, exchange effects are essentially
negligible, and the energy dependence in the local
equivalent potential is due to the non-locality induced
by couplings to other reaction channels.



  

It should be remembered that the empirical OMP that 
we obtain by fitting data is not the “local equivalent”
of the formal optical potential but a purely empirical
object, so that some of the energy dependence of
the parameters that we find may be intrinsic rather
than a consequence of the two sources of non-locality

To recap, we have seen that in its full form the 
empirical OMP may have up to 12 adjustable 
parameters. Supposing that we are able to obtain a
good description of data by adjusting these 
parameters (we shall briefly explain how this is done
in the next lecture) what have we gained by so doing?



  

1) By fitting large numbers of data sets for many 
    systems over a wide range of energies we can
    look for systematic variations with A, Z and
    incident energy (cf. Kepler and Tycho Brahe's
    planetary observations). 

2) For light ions (particularly nucleons) we may
    obtain “global” parameter sets that fit in an average
    way large bodies of data for different systems.
    These are useful in many ways, but can provide
    greatest insight when they fail badly — this can
    be an indication of shell effects etc.

3) They are needed as input to other calculations
    (inelastic scattering and transfer reactions). 



  

It would, of course, be much more satisfying if we
could calculate an optical model potential from first
principles. We have said that trying to do so using
Feshbach theory is virtually impossible. However,
it has been done — with considerable success —
for nucleons. 

While there are more modern theories, the standard
to which these are compared is the so-called “JLM”
potential: J. P. Jeukenne, A. Lejeune, and 
C. Mahaux, Phys. Rev. C 16, 80 (1977). This 
approach is based on a complex effective 
nucleon-nucleon interaction and infinite nuclear 
matter (folded over the target density) so works 
less well for light targets.



  

Examples:

Adapted from V. Lapoux, N. Alamanos and E. Khan, Phys. Atomic Nuclei 66, 1501 (2003)

Description is rather good, but precise fits to precise
data are not obtainable with JLM or similar potentials
based on local density models.



  

For heavy ions, although various attempts have been
made to calculate an OMP the agreement with data
is usually worse. The problem is in calculating the
imaginary part of the potential. As we shall see later,
the real part may be calculated with considerable
success for heavy ions, based on clues given by the
formal theory.

In the next lecture we shall examine how the optical
model is used in practice to analyse light ion elastic
scattering data.



  

Lecture 4: Optical model analysis of light ion elastic
scattering

Before proceeding to show how an optical model
analysis is performed in practice we will make a 
few general observations about how light ion elastic
scattering data are presented.

Very often, proton elastic scattering data are plotted
on an absolute cross section scale, i.e. the angular
distribution of the differential cross section is
plotted in units of mb/sr:



  

The black curves denote the Rutherford scattering
cross section: we are interested in deviations from
this …
Data from Phys. Rev. 167, 908 (1968).



  

If we divide the measured cross section by the
Rutherford cross section we can see the detail we
are interested in much more clearly:



  

This is not usually done for proton scattering, but it 
should be! It is, however, fairly routine for plotting the
elastic scattering of deuterons or heavier ions.

Now (finally) how do we go about performing an 
optical model analysis?

Even for the relatively simple problem of scattering
from a (complex) potential well the equations have
to be solved numerically. Our first requirement is
thus a code to perform the numerical calculations.

Several are available: ECIS, FRESCO (SFRESCO),
HERMES. All allow searching on parameters (we
shall return to this shortly).



  

ECIS and FRESCO are general direct reaction codes
which of course includes the ability to perform optical 
model calculations. HERMES is a specific optical 
model code. DWBA codes such as DWUCK can also 
calculate the elastic scattering using the optical model 
but do not usually allow parameter searches.

Optical model calculations have to be performed
numerically (there are no analytic solutions). However, 
the asymptotic solutions for the wave function are 
known analytically, so we may save some trouble by 
matching to these at an appropriate radius, the 
matching radius, Rm.



  

We also need to define a radial step size for the
numerical integrations that have to be performed, dr.

Finally, we truncate the infinite series of partial waves
at some finite number, ℓmax.

How do we choose these numbers for a particular
case? There is a useful “rule of  thumb” which uses  
the relationship between ℓ  and Rℓ, the classical turning 
point of the Rutherford orbit:  

ℓ (ℓ + 1) = kRℓ (kRℓ − 2n)

k = 0.2187[m(u)E(MeV)]1/2 fm-1

n = 0.1575 Z1Z2[m(u)/E(MeV)]1/2



  

For a given ℓmax we fix Rm using this relation, since  
Rm should be at least as large as R

ℓ
 for ℓmax.

To fix ℓmax we use trial and error. For most proton
elastic scattering 15 or 20 partial waves are usually
sufficient. Larger energies and heavier projectiles
and/or targets will need more. It should be large
enough that increasing ℓmax makes no difference to
our results.

To fix dr, we just choose a value. It should be such 
that our results do not change if we vary it between
reasonable limits. 0.1 fm is a good starting point,
although depending on the numerical methods used
0.05 fm or smaller may sometimes be required.



  

As an example we consider the 16O(p,p) data we
saw earlier. There exists in the literature a set of
potentials for these data in Phys. Rev. 184, 1061 
(1969), so we begin by repeating these calculations.
We use the code FRESCO (www.fresco.org.uk)

Points to watch in this type of exercise:

1) Check the definition of any surface terms with
     that used in the code of your choice. In this
     case there is a surface imaginary term of
     Gaussian form. The same thing applies to any
     spin-orbit terms; sometimes L . s is used rather
     than L . σ



  

2) Do a visual check of the calculation compared 
    to the data; does your calculation match the
    original? Also check the value of the reaction
    cross section, if given. Does it match your value?
    (within small variations due to machine precision).

Now we choose the parameters for the numerical
evaluation. Start with dr = 0.1 fm. We take ℓmax = 15
as a starting point, which gives values of 15.8 fm
and 12.1 fm for the classical turning points at 23.4
and 39.7 MeV respectively. Take R

m
 = 16 and 15 fm.

How do the results compare to the original 
calculations and the data?



  

Visual check is good: compare well to original plots.
σR also compare well: 499.8 mb and 490.0 mb at 23.4 
and 39.7 MeV, compared to 499 mb and 490 mb.



  

A simple visual check suggests that the description
(fit) at 39.7 MeV is much better than that at 23.4 MeV.

This is of course a highly subjective way of assessing
the “goodness of fit”. We require an objective way
of doing this, ideally one that can be quantified.

Conventionally, “goodness of fit” is assessed in optical
model work by the χ2 value, or most frequently, χ2 per
point, χ2/N. Strictly speaking, the quantitative values
are only meaningful if the errors are purely statistical
with a Gaussian distribution (in which case a value of
χ2/N = 1.0 indicates a perfect fit) but they do provide
a useful guide and enable comparisons.  



  

The definition of χ2 is:  

In our cases, χ2/N is 916.7 and 154.2 for Ep = 23.4
and 39.7 MeV respectively; not close to 1.0!

While this is not good (in principle) there are three
reasons for this:

1) The data are precise (error bars of less than ± 2%) 



  

2) The original fits  were constrained to have the
     same “geometry” (i.e. radii and diffuseness) at
     all energies  

3) Polarisation data were also included in the fit

However, precise data deserve precise fits; if not
there is information contained in them that we are
missing.  Can we improve on these fits, and how
do we go about it?

We must search on the parameters and try to
minimise χ2. However, the OMP used here has
9 parameters (12 at 39.7 MeV); searching on all 
of them at once is not a good idea! 



  

Two reasons: 

1) Purely practical; can take a long time to minimise 
    χ2 when varying so many parameters

2) The parameters are not, in fact, independent, 
     there are correlations between some of them. 

It is also not usually a good idea to adjust the 
spin-orbit potential parameters without polarisation
data.

We will see if we can improve significantly the fit
at 23.4 MeV. Since the “geometry” was fixed for
a wide range of energies, try searching on that.



  

Initial values are:
V = 47.25 MeV, rV = 1.142 fm, aV = 0.726 fm
Wd = 7.06 MeV, rd = 1.268 fm, ad = 0.980 fm
VSO = 4.09 MeV, rSO = 1.114 fm, a

SO
 = 0.585 fm

We start with aV. Search on this parameter alone:

SFRESCO (searching version of FRESCO)
minimises χ2 and yields a minimum value of 
χ2/N = 717 for aV = 0.660 fm.

Now search on rV. χ
2/N = 708, rV = 1.136 fm.

Search on rd. χ
2/N = 594, rd = 1.365 fm.

Search on ad. χ
2/N = 583, ad = 0.955 fm.



  

We could continue the search, but we have already
improved the χ2/N value considerably. How does
the angular distribution compare now?

Improved, but we are
clearly still missing
something in our fit.
More parameter
searching required or
a deficiency in our
model?
σR has not changed
significantly though: 
514 mb cf. 500 mb.



  

If we search on all 6 parameters of the central part
of the potential what do we find? χ2/N is now reduced
to 343, σR = 554 mb.

We are still some way
from a “good” description
of the data, but at least
the first peak is now well
described …



  

   
      

Agreement is better, but parameters are now a little 
strained:

V = 64.65 MeV, rV = 0.9095 fm, aV = 0.841 fm
Wd = 6.55 MeV, rd = 1.363 fm, ad = 1.095 fm

(recall that we have not searched on spin-orbit
potential).

This is about as far as we can go without introducing
yet more parameters (we could add a volume 
absorption term, as at 39.7 MeV, but recall the well
known quote of von Neumann!). What does this
comparative failure to fit the data well tell us?



  

   
      

1)  Fitting precise data precisely can be difficult!

2) As we saw previously, the OMP is intrinsically
    non-local (and L-dependent). While it is always
    possible to find a local equivalent to this N-L
    potential it may not be (and in general will not
    be) parameterisable with “standard” potential
    forms.

3) Linked to 2), strong couplings may induce effective
    potentials that cannot be satisfactorily modelled
    with standard potential forms. 



  

   
      

However, if we allow an L-dependent potential we
can fit these data well:

L-dependent fit from Kobos and Mackintosh, J. Phys. G 5, 97 (1979).

Slightly different energy
from same data set. OMP
of usual form but with
additional (complex)
L-dependent terms. χ2/N
for L-dependent OMP is
8.79, cf. 1160 for original
L-independent OMP!



  

   
      

Evidence for L-dependence seems compelling. It
does introduce extra parameters, but improvement
in quality of fit is dramatic.

The good fit does not tell us what causes the L-
dependence, but at least we now know that the 
OMP for this system must have this characteristic.

Also suggests that standard OMP forms can be
inadequate for proton scattering from light targets. 
Could also be a signature of strong coupling effects 
on elastic scattering from other reaction channels 
(giant resonances, (p,d) pickup etc.)



  

   
      

However, just to show that all is not doom and gloom,
the optical model in its standard form with standard
Woods-Saxon potentials can describe data for elastic
scattering of protons from heavier targets very well:

Data from: W. T. H. van Oers et al., Phys. Rev. C 10, 307 (1974)

Standard 9-parameter Woods-Saxon
potential can fit these data well:
χ2/N = 5.57! (only 6 parameters
searched on; spin-orbit potential was
held fixed).

Similar fits obtained over a wide
incident energy range.



  

   
      

A word about potential ambiguities …

The OMP is not normally uniquely determined by
the data. The multi-dimensional χ2 space will in
general have local minima as well as the overall
or “global” minimum. These minima are often quite
broad in certain directions, so some parameters are
not well determined; there are ambiguities.

OMP ambiguities are of two basic types: continuous
and discrete. Continuous ambiguities arise due to
the broadness of the “valleys” or minima in the χ2

space. The best known continuous ambiguity is:  

with n ≈ 2



  

   
      

Any change in V can be compensated for by a
corresponding change in rV (within certain limits,
up to about 10 %). 

Similar ambiguities exist for W and aW and there
are undoubtedly more involving three parameters.

Discrete ambiguities are somewhat different. It is
found that if V is steadily increased and the other
parameters readjusted to optimise the fit χ2 passes
through a whole series of minima. Basically, this
is due to an additional half-wave fitting inside the
well than for the next shallowest potential. This
leads to “families” of deep and shallow potentials.  



  

Lecture 5: Optical model analysis of heavy ion elastic
scattering

While the theory we use is still the same – the optical
model does not differ for light and heavy ions – there
are some important differences in the analysis 
techniques for heavy ion elastic scattering.

The target nucleus is more or less transparent to 
nucleons, deuterons and to a lesser extent the other 
light ions (t, 3He, α).

In contrast, heavy ions are strongly absorbed and
the target is more or less opaque or even “black”. 



  

This has important implications for optical model
analyses: we are no longer sensitive at all to the
potential in the nuclear interior. Heavy ion elastic
scattering data only determine the optical potential
in a relatively narrow region at the nuclear surface
so that the ambiguities in the OMP extracted from
data are even more pronounced than for light ions.

There will thus usually be many “families” of OMPs
that fit a given data set, each with its own continuous
ambiguities. This should always be borne in mind
when speaking of “the OMP” for heavy ion elastic
scattering. 



  

What do “typical” heavy ion elastic scattering
angular distributions look like? Example: 16O + 58Ni

Two things to note:

1) The evolution of the shape of the 
    AD as the incident energy is 
    reduced.

2) The cross section scale is
    logarithmic

Taken from West, Kemper and Fletcher, 
Phys. Rev. C 11, 859 (1975)



  

Why is the logarithmic cross section scale significant?

If we only plot our data in this fashion we may miss
some significant information: 

“A particularly sensitive part of the angular distribution 
is the oscillatory region just before the exponential fall 
below the Rutherford cross section. (The details of this 
region may be overlooked if, as is often done, the 
ratio-to-Rutherford cross section is shown on a 
semi-logarithmic plot. It is more revealing to use a 
linear plot.)” J. B. Ball et al., Nucl. Phys. A 252, 208 
(1975). 

See also: G. R. Satchler, Phys. Lett. B 55, 167 (1975).



  

We demonstrate what this means using the 16O + 58Ni
data:



  

Fits are from the original publication: “geometry” is
fixed at r0 = 1.22 x (161/3 + 581/3) fm, a0 = 0.50 fm
for both real and imaginary parts (so vary V and W
to obtain best fit).

While the fits are rather good – χ2/N = 0.71 and 4.77
at 40 and 46 MeV respectively – the linear plot shows
room for improvement at 46 MeV.

V and W are: 90.5 MeV and 7.26 MeV at 40 MeV
                      85.7 MeV and 33.3 MeV at 46 MeV

How well defined are these values, and how can we
find out?



  

Since the geometry is fixed here, we have an ideal
case for a grid search on V and/or W: we fix V at some
value and then optimise the fit (in this case, we search 
on W to minimise χ2) and note the value of χ2. We
then change V by some incremental value and repeat
the exercise. We then end up with a plot like this:

This is a somewhat artificial
case but the general principle
holds. If the data are not very
precise or if there is little
structure to fit (i.e. close to the
Coulomb barrier) then the 
minimum will not be so well
defined.



  

The constraint that the real and imaginary geometries
are the same is rather artificial for heavy ion scattering.
In general it will not be possible to obtain good fits to
data under this assumption (there is no real physical
reason for doing so anyway).

If we remove this constraint can we significantly 
improve the fit at 46 MeV ? Yes, but only at the cost of 
unphysical OMP parameters:

Fix rC = rV = rW = 1.3 x (161/3 + 581/3) fm

Search on the other parameters: V = 29.8 MeV, aV = 0.55 fm
                                                    W = 44.4 MeV, aW = 0.324 fm
χ2/N = 2.51 (c.f. previous value of 4.77)



  

The fit is very good but the
real depth is unphysically
low, especially compared to
the imaginary depth. The
imaginary diffuseness is
also a little low (normally
expect values around 0.5 to
0.6 fm).

We seem to have got stuck
in a “shallow” real potential
family. Is there any way of
avoiding this?



  

Yes, and at the same time we can at least place the 
real part of the OMP on a sounder theoretical basis.

Feshbach theory gives us a clue. This suggests that
we may write the real part of the OMP in the
following schematic fashion:

V(r) = Vf(r) + ΔV(r) 

where Vf(r) is the so-called double-folding potential
and ΔV(r) is the real part of the dynamic polarisation
potential (DPP). The double-folding potential is 
obtained by integrating — “folding” — an effective
nucleon-nucleon force over the matter densities of
the projectile and target.



  

The DPP arises due to the effects of coupling to the
non-elastic channels (inelastic excitations, transfers).

In fact, the DPP also has an imaginary term and we
could also write W(r) in a similar schematic fashion.
The imaginary part of the DPP accounts for the
absorption induced by the couplings to other direct
channels, with the equivalent of Vf(r) being an
imaginary potential “inside” the Coulomb barrier that
accounts for absorption due to fusion. 

However, the DPP is essentially impossible to
calculate ab initio, so this formal exercise does not
seem to have helped us much so far. 



  

Nevertheless, it can be turned to practical use. We
make no attempt to calculate the imaginary part of
the OMP from first principles and instead keep the
empirical (usually Woods-Saxon) form with its three
adjustable parameters. 

For the real part, we assume that ΔV(r) is small 
enough compared to Vf(r) that we may safely neglect 
it. We therefore arrive at what we might call a 
“semi-microscopic” OMP of the following form:

U(r) = NR Vf(r) + i W(r) 

where  NR is a normalisation factor.



  

If our assumption is good then NR should be close to
1.0. A large body of data was analysed using this 
model by Satchler and Love, Phys. Rep. 55, 183 
(1979) and they found a mean value of:

 NR ≈ 1.11 ± 0.13

so the assumption seems to be valid for a wide range
of systems (we shall discuss the exceptions later).

The use of the double-folding model to calculate the
real part of the OMP at least fixes the shape and, to
some extent, the depth of the real potential, leaving
us with a maximum of 4 adjustable parameters.



  

How, then, do we calculate Vf(r)? For interacting
nuclei with mass numbers A1 and A2 we define the
following coordinate system: 

Vf(r) is then calculated as:



  

We need the densities, ρ1(r1) and ρ2(r2) and the
effective nucleon-nucleon interaction. The densities
are the nuclear matter densities. These can be
obtained by calculation, e.g. the shell model, or can
be derived from empirical charge densities (from e.g.
electron scattering).

The charge density is first converted to the proton
density by unfolding the proton charge distribution.
The neutron matter density is then obtained by
assuming that:

ρn = (N/Z) ρp

this is only a reasonable approximation if N ≈ Z



  

The most popular choice for the effective interaction
is the so-called M3Y. This was used by Satchler and
Love in their extensive study. There is a more modern
form known as the BDM3Y1 which also depends on
the nuclear density but which gives similar results.

Finally, we need a code to calculate the potential for
us. Several exist, with DFPOT being the most readily
available (Comput. Phys. Comm. 25, 125 (1982)).

Armed with our double-folding real potential, how 
well can we describe the 46 MeV 16O + 58Ni data? 
Can we improve on the original fit without ending 
up with unphysical parameters? Yes, if we proceed 
with care …



  

As a first guess, we start with the same imaginary
potential parameters as in the original Woods-Saxon
fit and set NR = 1.0. We keep rW fixed at 1.22 fm and
search on the remaining three parameters: NR, W and
aW. We arrive at the following “best fit” solution:

NR = 1.41, W = 92.8 MeV, rW = 1.22 fm, a
W
 = 0.368 fm

with χ2/N = 2.79. The imaginary well depth still seems
rather large (although the double-folding real potential
is very deep, 907 MeV at r = 0 fm) but aW is rather 
more reasonable than our previous attempt. The AD
is visually indistinguishable from the Woods-Saxon
“best fit” (the dashed green curve on the plot).



  

If we fix rW = 1.3 fm we arrive at the following best 
fit OMP parameters:

NR = 1.40, W = 24.0 MeV, rW = 1.3 fm, aW = 0.362 fm

W is now much more reasonable and aW has hardly
changed. χ2/N = 2.71 and the AD is again visually
indistinguishable from the previous best fits.

Everything now seems to be under control, but … 
Didn't we say that we ought to find that NR ≈ 1.0? 
1.4 is definitely not ≈ 1.0! What's going on?

Before we answer that question, let us compare the 
various “best fit” results. 



  

There are in fact three curves in the 
figures, the “best fit” Woods-Saxon
and the two DF fits (with rW = 1.22
and 1.3 fm). How do the OMPs
compare?



  

Our assumption that ΔV(r) is small enough to be 
neglected has broken down. It is found that for 
incident energies close to the Coulomb barrier the 
real DPP can become substantial compared to the
double-folding potential, at least in the surface. 

The real DPP is linked to the imaginary one via a
dispersion relation:

so as W(r) varies rapidly near the barrier, so does 
ΔV(r).



  

First demonstrated for the 16O + 208Pb system:

Nagarajan, Mahaux and Satchler, Phys. Rev. Lett. 54, 1146 (1985)



  

The effect should, in principle, be universal, but it
can be difficult to demonstrate unambiguously. 

We can simulate the effect of ΔV(r) by the factor NR 
because for heavy ions the data are only sensitive 
to the potential around the surface; the effective 
real potential induced by couplings is peaked at
the surface.

The 16O + 58Ni system is one case where the effect
is large enough to be clearly defined as an energy
variation in the surface strength of the potentials.
They also follow a dispersion relation quite well …



  Keeley et al., Nucl. Phys. A 582, 314 (1995).



  

The double folding model also breaks down under
a different set of circumstances. It was found to
fail, in that values of NR ≈ 0.5 – 0.6 were required,
for systems involving 6Li, 7Li and 9Be as projectiles.

These nuclei have one important property in 
common, viz. they are all weakly bound, i.e. they 
have low (~ 1 – 2 MeV) thresholds against breakup 
into 2 or more fragments. 

As we shall see in the next lecture, this was the key 
to explaining the apparent failure of the double
folding model.



  

Lecture 6: Optical model analysis of heavy ion elastic
scattering continued

We saw last time that the “semi microscopic” OMP
consisting of a renormalised double folding real part
and a Woods-Saxon imaginary part was able to
describe well a wide range of data with NR ≈ 1.0, with
the exception of energies close to the Coulomb
barrier where ∆V(r) can be large compared to Vf(r).

Other exceptions are data for 6,7Li and 9Be projectiles:



  
Data: Glover et al., Nucl. Phys. A 341, 137 (1980)Data: Veal et al., Phys. Rev. C 60, 064003 (1999)



  

The best fit OMP parameters are:

6Li: NR = 0.60, 
      W = 10.96  MeV, rW = 1.3 fm, aW = 0.693 fm

7Li: NR = 0.76, 
      W = 12.78  MeV, rW = 1.3 fm, aW = 0.692 fm

We find that NR is significantly smaller than 1.0
for these systems. This is an almost general
phenomenon for 6,7Li projectiles (and 9Be too).

What causes it? 



  

Again, our assumption that ∆V(r) is small enough
compared to Vf(r) to be neglected breaks down.
This time, it is due to a repulsive real DPP induced
by the breakup of the projectile. 

This has been shown explicitly: e.g.
Sakuragi, Yahiro and Kamimura, Prog. 
Theor. Phys. Suppl. 89, 136 (1986)

Note that ∆W(r) is very small in the
surface, although this does depend
on the details of the calculation. ∆V(r)
is always positive in this region.

Thus, to simulate ∆V(r) for breakup
we need NR < 1.0



  

However, it does not always hold. For 6,7Li elastic
scattering from a 208Pb target at energies close to
the Coulomb barrier we find that while NR is still 
around 0.6 for 6Li it becomes larger than 1.0 for
7Li (like a “normal” heavy ion …)

Taken from Keeley et al., Nucl. Phys. A 571, 326 (1994)



  

We can even detect the difference in the data: 

The plot shows data for 7Li + 208Pb
(black) and 6Li + 208Pb (red) at incident
energies of 35 MeV. The Coulomb
rainbow peak is clearly much more
pronounced for 7Li than it is for 6Li.
This is reflected in the greater surface
strength of the 7Li real potential.

This behaviour was traced to the 1
MeV difference in breakup threshold
between 6Li and 7Li but the effect
becomes less prominent for lighter
targets and larger incident energies.



  

This brings us quite nicely to the final part of this 
lecture: why study elastic scattering?

There are two answers to this question:

1) Since elastic scattering is always present, it
     is a vital ingredient in the analysis of other
     direct reactions. We need optical potentials
     that describe the appropriate elastic scattering 
     as input to any analysis of inelastic scattering
     and transfer reactions.

2) For its own sake. Elastic scattering can provide
     information on the structure of the colliding
     nuclei itself. Coupling effects are also worthy
     of study.



  

We shall demonstrate the first point in later lectures
when we investigate these reactions.

Here, let us return to light ion elastic scattering,
specifically proton scattering.

What does proton elastic scattering actually tell us?

The rms matter radius of the target nucleus and not 
much else, in most cases. Using sophisticated 
microscopic models to calculate the proton-nucleus 
potentials it is found that, provided the target density 
used has the correct rms matter radius, the fit to the 
elastic scattering data is more or less insensitive to 
other details of the nuclear matter density.



  

Take the case of 6He(p,p). The 6He nucleus is what
is termed a “halo” nucleus. It has a compact core (in
this case a 4He) surrounded by an extended “halo”
of neutrons. However, the impact of this halo on the
calculated elastic scattering is marginal:

Taken from Lagoyannis et al., Phys. Lett. B 518, 27 (2001).

Even if there were data for θc.m.

> 70˚ the influence of the halo
is similar to (or even smaller than)
that of couplings to reaction
channels, the effect of which is
not included in the formalism.



  

So much for what we might term “static” effects 
due to the specific nuclear structure of the target.

As we said previously though, fitting a large body
of proton elastic scattering data with the optical
model may be likened to the work of Kepler in
reducing Tycho Brahe's mass of planetary 
observations to his three laws. 

It is for targets where the optical model fails (or at
least has difficulty) in fitting data with standard 
forms or where averaged (what we term “global”) 
OMP parameters describe the data poorly that 
we should look for “dynamic” effects due to the
specific nuclear structure.



  

A good example of strong dynamic effects is seen
in the 15.7 MeV p + 8He elastic scattering data from 
GANIL. Neither global parameters adapted to stable 
p-shell nuclei nor JLM based on a realistic 8He matter 
density can describe them:

A standard OMP can easily
be adjusted to fit these data
with reasonable parameters,
however:

Data from Phys. Lett. B 619, 82 (2005)

Watson et al. OMP: Phys. Rev. 182, 977 (1969)



  

Best fit parameters are:

V = 128.8 MeV, rV = 1.48 fm, aV = 0.509 fm
Wd = 19.33 MeV, rd = 1.173 fm, ad = 0.465 fm
Vso = 5.5 MeV, rso = 1.136 fm, aso = 0.57 fm

χ2/N = 0.32

c.f. Watson et al. global OMP:

V = 69.73 MeV, rV = 1.136 fm, aV = 0.57 fm
Wd = 13.94 MeV, rd = 1.136 fm, ad = 0.5 fm
Vso = 5.5 MeV, rso = 1.136 fm, aso = 0.57 fm

χ2/N = 20.4 (34.0 for JLM)

What causes this large deviation from “average” behaviour?



  

Consider the structure of 8He in terms of the 
shell model:

1s1/2

1p3/2

νπ

The closed ν p3/2 sub-shell means that when a proton
interacts with a 8He there is a large probability that
it will pick up a neutron to form an outgoing deuteron.
This feeds back on the elastic scattering, mainly in
the form of increased absorption. This will be reflected
in the “best fit” OMP parameters. 



  

What of heavy ion elastic scattering? Surely that
is uninteresting since it is only sensitive to the
OMP in the surface? Also, it is not amenable to
obtaining global potential parameters.

In fact, we have already seen that heavy ion elastic
scattering can be sensitive to differences in the
nuclear structure of the interacting nuclei under the
right conditions:

1) Energy range – close to the Coulomb barrier
2) Precise measurement – ~ 2-3 % uncertainty
3) Careful choice of target and/or projectile



  

A sub-set of heavy ion elastic scattering data that 
are particularly sensitive to nuclear structure are
those systems where there is strong coupling to
other reaction channels, usually inelastic excitations.

Under the right conditions such data can be
quantitatively sensitive to the nuclear structure,
although  they are usually difficult, if not impossible,
to fit with a conventional OMP.

A recent review article has dealt with this subject:
Keeley, Kemper and Rusek, Eur. Phys. J. A 50, 
145 (2014) so I will only show a few examples
here.



  

Two examples, target (left) and projectile (right) coupling:

72 MeV 16O, curves include 0+ ↔ 2+ ↔4+

coupling in Sm; B(E2) for 152Sm nearly
X 5 that for 148Sm (E

ex
 also lower than 148)

Taken from Phys. Rev. C 29, 459 (1984)



  

These are examples of strong coupling to inelastic excitations.

The elastic scattering is sensitive to the B(E2) value of the
relevant coupling almost exclusively (it is the Coulomb
excitation that is important here since the charge product
Z1Z2 is large).

Such data are difficult to fit with an OMP of standard form.
One can obtain very good descriptions either by explicitly
including the coupling (coupled channels calculations,as in
the previous slides, which we shall consider in the next 
lecture) or by adding a long-range imaginary DPP to the 
usual OMP.

The form of the latter can be estimated using semi-classical
theories of Coulomb excitation and also works very well …



  

If appropriate approximations are made an analytic
expression for a long-range imaginary DPP is
obtained (the real part is negligible under these 
conditions) which, when added to a conventional 
OMP, describes the elastic scattering well:

Taken from Love, Terasawa and Satchler, Phys. Rev. Lett. 39, 6 (1977).



  

Apart from the OMP parameters (obtained in this
case by fitting the quasi-elastic scattering AD) the
only parameter in this model is the B(E2) value.

The only problem with this type of study is that it
is essential to measure the pure elastic scattering.
Since the strongly coupled states tend to have 
small excitation energies (~100 keV or even less)
this can be a major experimental headache! Often
magnetic spectrometers are required to obtain the
necessary resolution, which leads to a long
experiment.



  

Similar effects occur in the elastic scattering of
many light radioactive beams, the classic example
being 6He scattered from a 208Pb target:

(a) 27 MeV 6He + 208Pb
Kakuee et al., Nucl. Phys. A 728, 339 (2003)

(b) 45 MeV 6He + 208Pb

Two things to note:

1) Effect is still dominated by Coulomb
    excitation (Coulomb breakup here)

2) The effect diminishes as the incident
    energy is increased above the barrier

For these nuclei, measuring pure elastic
is not a problem (no bound excited states!)



  

There are many other examples of radioactive
beams where this behaviour is known or expected.
There is still plenty of work to be done in this line.

I hope that this small digression has shown that
elastic scattering is interesting for its own sake
and not just as an ingredient to reaction studies.

Fitting data with an optical model may seem to be
a somewhat pointless exercise in its own right, but
such fits can give us clues to important physical
effects that require more sophisticated models to 
describe.



  

Attempting to systematise large bodies of data
through the search for simple laws that govern
their behaviour is a first step to true understanding:
without Kepler's work Newton would have had a
much harder task in formulating his theory of
gravitation.

We might not yet have our Newton for elastic
scattering but we certainly still need our Keplers! 



  

Lecture 7: inelastic scattering

To recap, inelastic scattering takes place when we
have an inelastic collision between two interacting
nuclei; i.e., one (or both for heavy ion projectiles)
of the nuclei involved is raised to an excited state 
during the collision with a corresponding loss in the 
total kinetic energy of the system.

The excitation usually takes one of two basic forms:
single particle (or hole) excitations or collective
excitations, subdivided into vibrational and rotational
excitations.



  

This is, of course, a simplified picture, and some
excitations do not fall neatly into a particular category.

We shall not consider single particle excitations here
and concentrate on collective – vibrational and
rotational – excitations.

As the name implies, these are collective motions of
the nucleus as a whole and can be pictured by 
analogy with the motions of a drop of liquid. 

If this drop is deformed, i.e. non-spherical, in shape 
it can rotate about an axis of symmetry to produce
rotational excitations. If spherical, it can vibrate in
various ways to produce vibrational excitations.



  

Deformed nuclei can also vibrate, so they usually
have a mixture of rotational states (divided into
bands of related states) and vibrational states 
(which may be the starting point – the band head 
– of a rotational band).

We will not go further into the details of nuclear
structure here – it is a specialist subject in its own
right – but will concentrate on how we model 
inelastic excitations using direct reaction theory.

The theory is identical for light and heavy ions,
but Coulomb excitation is obviously much more
important for heavy ion inelastic scattering.



  

To begin, we take the case of an even-even
rotational nucleus. How do we model the
excitation of the first member of the ground 
state rotational band, i.e. the 0+ → 2+ transition?

We need to calculate the matrix elements for
the set of coupled equations (recall lecture 2).
To do this we need an interaction potential that
can take account of the collective excitations.

This is most simply done with a deformed optical
potential. If we assume that the nucleus is 
permanently deformed then the radius is:



  

β is the deformation parameter. If we now assume
that the potential depends on the distance from
the nuclear surface [e.g. in a Woods-Saxon 
potential we replace R by R(θ,φ)] and expand to
first order in β we obtain:

The same formalism may be applied to the excitation
of a 2+ single phonon state in a vibrational nucleus 
only now the radius is given by:



  

and, again to first order in β, the potential is now:

and we may define a root-mean-square deformation
parameter as:

These transition potentials may be used to calculate
the matrix elements in either DWBA or CC formalisms



  

A similar exercise may be performed for the Coulomb
excitation.

In DWBA there is no difference between excitation
of a single quadrupole phonon in a vibrational
nucleus and excitation of the first 2+ state of the 
ground state band of a rotational nucleus.

However, if we use the more accurate CC theory,
second order effects come into play, and for the
rotational nucleus reorientation terms appear. These
are diagonal matrix elements linking states in different
magnetic sub-states. They do not exist in vibrational
nuclei since these matrix elements are then zero.



  

In principle, CC should be used for collective
transitions since they are strongly coupled, but
DWBA is still sometimes used, particularly for the
special case of giant resonances.

However, there are several important considerations
that are common to both formalisms as applied to
inelastic scattering.

We have seen that in addition to the spherical part
of the optical potential we now need to define a
deformation parameter β. In fact, this enters the
equations as the combination βR0, referred to as
the deformation length, δ, usually given in fm.



  

Thus, in principle, we need only define β in addition
to the usual optical potential to describe inelastic
scattering. However, there are some choices to be
made!

1) There are nuclear and Coulomb potentials. Should
     βCoul = βNuc? Or should δCoul = δNuc? Or are the two
     independent?

2) The nuclear potential has both real and imaginary
     parts. Should  βreal = βimag or δreal = δimag? Or are the 
     two independent?

3) Should we deform the imaginary part at all?



  

To answer these questions, it should first be stressed
that both β and δ are model dependent, i.e. the exact
value extracted by fitting a given data set will depend
on the details of the model used. However, generally
δ is better defined than β and I personally prefer to
work with it (most reaction codes use β, although
FRESCO uses δ).

In principle, one expects that the Coulomb and 
nuclear responses should be the same in the 
collective model, so we would expect δCoul = δNuc. 
However, remember that our “nuclear fluid” has
two components, neutrons and protons …



  

The Coulomb response depends on the distribution 
of the protons alone, whereas the nuclear response
will also depend on the distribution of the neutrons. 
They need not coincide exactly, and for more exotic 
nuclei there is no a priori reason why δCoul = δNuc. 

However, the nuclear response ought to be the same
for both real and imaginary parts. Since R0 will not
in general be the same for both parts I prefer to fix
δreal = δimag. It is, however, a moot point whether one
should deform the imaginary part of the potential at
all; certainly for heavy ions fits to data are worse if
this is not done.



  

We can at least avoid the question of what to take
for βCoul (or δCoul) by using the B(Eλ) value instead
for the Coulomb coupling.

B(Eλ) is the electric transition probability for the
2λ-pole transition and is usually expressed in units 
of e2bλ, where e is the charge on the electron. N.B.
in reaction work we use B(Eλ)↑, unlike in gamma
spectroscopy where B(Eλ)↓ is quoted.

FRESCO, for example, uses the reduced matrix
elements for Coulomb excitation, related to the
B(Eλ). Other codes use βλ for the Coulomb as well
as the nuclear excitation. 



  

The advantage of using B(Eλ) is that it can be
independently determined (e.g. by electron scattering
or Coulomb excitation) and is thus independent of
the charge radius chosen. We can relate B(Eλ) to
β

λ
 within the collective model as follows: 

B(Eλ) = (3/4π)2 (ZeRλ)2βλ
2

where R is the nuclear charge radius. Thus, the
value of β

λ
 obtained depends on the choice of R.

How does all this work out in practice? Let us take a
few typical examples of inelastic excitation with both
light and heavy ions.



  

We take as our first example 43 MeV 58Ni(α,α ) toʼ
the 1.45 MeV 2+ state of 58Ni. We begin with DWBA:

We fix the B(E2) at the known value and adjust δ2 to fit the inelastic data



  

The description is good, we obtain δ2 = 1.10 fm.

Note that we are insensitive to the inclusion of an
imaginary coupling potential in this case, and only
sensitive to the inclusion of Coulomb excitation at
forward angles (where there are no data).

Thus, for inelastic scattering of α particles from a
medium mass vibrational target nucleus DWBA
seems to work well. What do we find if we perform
a coupled channels analysis?



  

Coupled channels analysis of the same data. We
fix B(E2) at the same value as before but this time
we have to search on the OMP parameters as well
as δ2 since in CC calculations the “back coupling”
affects the elastic scattering. 



  

The result is very similar to DWBA, although we
have had to readjust the OMP parameters. We
again see little sensitivity to the inclusion of either
Coulomb excitation or imaginary coupling potentials
(the omission of the latter does have a slight effect
on the elastic scattering). 

The value of δ2 obtained is 10 % smaller than in 
DWBA, δ2 = 1.00 fm, within the likely uncertainty.

Thus in this case DWBA seems perfectly adequate.
This is largely due to the relatively weak coupling
strength.



  

As an example of a vibrational coupling in heavy
ion inelastic scattering, we stick with a 58Ni target
but this time excite it with a 16O beam. We again
perform both DWBA and CC analyses and assess
the importance of Coulomb excitation and the
imaginary coupling.

We take as our data set elastic and inelastic 
scattering (to the 58Ni 1.45 MeV 2+ state) at 16O
incident energy of 42 MeV. We again include just
the 0+ → 2+ coupling in the 58Ni target, as in the
α scattering, fixing the B(E2) at the same value.



  

DWBA first. Best fit δ = 1.0 fm, so similar to α
scattering result. Note that both Coulomb excitation
and imaginary coupling are much more important
than for α scattering.



  

Now for CC. Best fit δ = 1.0 fm, so same as for
DWBA, although we have only searched on V and
W so this value could change slightly if we optimised
the potential “geometry”.



  

Thus, for heavy ions we also find that DWBA is
adequate for a typical vibrational nucleus, although 
CC does give more consistent results for data sets 
at different incident energies. 

Coulomb excitation is important (as expected) but
we also find that imaginary couplings have a
significant influence on the inelastic scattering,
although this is smaller for CC than for DWBA.

How well does the simple collective model account
for couplings to a rotational band?



  

For a rotational band in an even-even nucleus we
have the following sequence (for, e.g., the ground
state band) of levels: 0+, 2+, 4+, 6+ etc. If we truncate
the series at Jπ = 6+ the following couplings are
possible if we allow up to 26 pole coupling:

Due to the multi-step couplings
it is not really sensible to use
DWBA for such a coupling 
scheme. We go straight to CC, 
and in principle have to determine
three parameters: β2, β4 and β6.



  

CC calculations for 65 MeV protons incident on 184W.
We assume a pure rotational model for excitation
of the first 2+, 4+ and 6+ levels:



  

Agreement is reasonable. Calculations do not
include 26 pole couplings: evidence for these
in this case is marginal (at least with the 
available data). At least we can say that any
26 pole coupling strength is small in this model.

We have thus seen that the pure rotational model
also works rather well in a CC calculation.

In the next lecture we look at some refinements
in how the calculations are performed and
investigate semi-microscopic methods.



  

Lecture 8: inelastic scattering continued

In the previous lecture we saw how DWBA or CC
calculations using the collective model were able
to describe rather well data for systems with collective
motion.

However, you will recall that we simplified the 
treatment by only taking the expansion of the
deformed radius to first order in β. This has been 
standard practice for many years, but is known to 
be a relatively poor approximation if β is large.

Since DWBA is first order anyway refinements only
make sense for CC calculations.



  

Many codes now allow treatment of the deformation
to all orders (e.g. ECIS, FRESCO, CCFULL).

What difference does this make to our examples?

Amounts to an ≈ 15 % reduction in δ



  

And for a heavy ion projectile?

Amounts to an ≈ 20 % reduction in δ



  

We find that even for a relatively weak vibrational
coupling (the 0+ → 2+ coupling in 58Ni) there is a
significant change in the value of the deformation
extracted if we go to all order, even if the shapes
of the angular distributions are not significantly
altered.

What happens in our rotational coupling case
where the coupling strengths are stronger?



  

There is some slight improvement in the shape of
the 4+ and 6+ angular distributions (the elastic
scattering is unchanged) but while δ2 is unaltered,
δ4 has increased in magnitude by ~ 42 %.

Dashed curves denote
previous 1st order result
and solid curves the new
all order one.

Due to the more complex
coupling scheme it is not
obvious whether the lack 
of change in δ2 is significant



  

Since the question of all order versus first order
only affects the nuclear excitation (it does not apply
to the Coulomb excitation part) it will be seen that
drawing quantitative conclusions from deformation
parameters (either β or δ) extracted from fits to
inelastic scattering data can be problematic.

This is particularly so if we want to look for evidence
of βCoul ≠ βNuc.

We have also confined ourselves to the strict 
collective model (at least for the rotational case)
in that within a given band βλ values (including
reorientation couplings) are the same for all
transitions.



  

This need not be the case, and in general it is not
true (although it is often a good approximation). If
the information is available (e.g. static quadrupole
moments of non spin-zero states for reorientation
couplings) most codes allow the strength of each
coupling to be set individually. 

One could of course try to determine the individual
strengths by fitting a set of inelastic scattering
data. This brings us back to the old problem of 
trying to fit more parameters to a limited data set, 
but there can be cases where it is impossible 
adequately to “fit the elephant” otherwise!



  

Ultimately, how serious this model dependence 
of the nuclear deformation parameters is will
depend on the use one wishes to make of the
inelastic scattering data. If one is attempting to
draw nuclear structure conclusions from β or δ
values extracted from inelastic scattering data
it can be a significant problem.

On the contrary, if one is mainly interested in the
coupling effect of inelastic excitations on the
elastic scattering (often the case in heavy ion work)
then it is only a problem if one is constrained to 
take β or δ from analyses in the literature, when
care should be taken to use the same model.



  

It would, of course, be more satisfying if we could
in some way calculate the transition strengths
using a nuclear structure model (which might in 
principle be more sophisticated than the simple 
collective model). 

Obviously, in the light of what we have just said, 
calculating the deformation parameters alone would
not help us much. Is there another way?

Yes: we may go back to the folding models we 
discussed for elastic scattering (JLM for nucleons
or double-folding for heavy ions). We can equally
well use these models with a transition density
replacing one of the ground state matter densities.



  

These transition densities may be calculated using
a structure model (just as the ground state densities
could) and used to calculate the transition potentials
required in our inelastic excitation calculations.

Alternatively, we may take a semi-empirical approach
and deform the appropriate ground state density (as
opposed to the OMP). This is known as the Tassie
model.

Both approaches also get round a problem that may 
have occurred to you: all* the transition potentials in 
the “standard” collective model have the same radial 
shape. There is no reason why this should be so in 
reality.
* Almost all. Monopole and dipole transitions have a different form



  

We first consider JLM as applied to proton elastic
and inelastic scattering:

DWBA calculations: 32S empirical densities from (e,e')
+ assume ρn = ρp. 

38S calculated densities.

From Lapoux, Alamanos and Khan, Phys. Atomic Nucl. 66, 1501 (2003)



  

Similar calculations for p + 34Ar with theoretical
densities:

Agreement is also
reasonable except
for the 3- state – a
good test of the
structure model.



  

JLM has the advantage that it calculates a complex 
OMP, so the imaginary excitation can be calculated 
in exactly the same way as the real.

In heavy ion work, if we use the double folding model 
to calculate the transition potentials as well as the 
diagonal OMP we are still left with the problem of 
what to do about the imaginary coupling potentials, 
since the M3Y and similar effective interactions are 
purely real.

One could use the DF potential for both, but there is 
no real physical justification for this and it places a 
heavy constraint on our OMP.



  

We therefore usually adopt a compromise: use the 
double folding method to calculate the real potentials 
(both scattering and transition) with either calculated 
or empirical densities (and possibly the Tassie model 
for the transition densities) and stick to the standard 
prescription for the imaginary part.

This complicates things a little if we wish to keep the
real and imaginary deformations identical (either β or
δ).

Alternatively we may ignore imaginary couplings and
hope to include all important couplings explicitly.



  

The Tassie model is used to calculate the transition
potential using a transition density derived from the
ground state nuclear matter density in the following
way:

This then replaces the ground state density in the 
folding model integral to produce the transition
potential that we require. Note that in some codes
an additional factor of 1/√(4π) needs to be inserted
to give the correct normalisation.



  

How does the Tassie model compare to the “standard”
deformed potential model in an actual application?

Let us return to our example of 42 MeV 58Ni(16O,16O')
We calculate the real transition potential in two ways:

1) Using the Tassie model by deforming the 58Ni
    ground state density

2) In the “standard” fashion by deforming the double
    folded real potential

In each case we use the same δ value and imaginary
coupling potential (diagonal potentials are also the
same in both cases).



  

There is clearly some minor difference, only really
evident at backward angles in the inelastic scattering
(N.B. the best fit δ2 = 1.25 fm for the Tassie model)



  

How do the two transition potentials compare?

Rather close in the surface, where the data are
sensitive to the potentials.



  

We see that using the double folding model to
calculate transition potentials does make some
difference – the δ values are usually somewhat 
larger than with the usual deformed potential 
model. 

However, if the Tassie model is used to obtain the
transition densities it is only first order in δ, so might
not be as accurate as we could wish for strong
couplings.

Again, there are choices to be made and the values
we extract for deformation parameters are model
dependent.



  

To summarise, why do we study inelastic scattering?

Inelastic scattering of the type we have been
discussing here preferentially excites the strong
collective excitations of nuclei, thus making it a
good probe of such excitations.

The “standard” approach using a deformed potential
model is problematic if we wish to draw detailed
structure conclusions – not only are the deformation
parameters obtained model dependent but the
relation of the potential deformations to those of the
density distribution is not obvious.



  

Nevertheless, inelastic scattering, particularly of
protons, is a valuable tool for probing the nuclear
response of nuclei.

For proton scattering, JLM or similar models may
be used in conjunction with theoretical densities
(both diagonal and transition) to calculate the
inelastic scattering. In this way we can have a more
direct comparison between structure theory and
direct reaction data.

Such analyses can provide evidence for neutron
halo effects  and the breakdown of old and the
appearance of new magic numbers.



  

Lecture 9: transfer reactions

Transfer, or rearrangement, reactions are perhaps 
the most important type of direct reaction in nuclear
physics. Beyond their intrinsic interest they are a 
valuable tool for the extraction of nuclear structure
information.

Their value for structure studies arises mostly due
to their selectivity: reactions such as (d,p) and (p,d)
preferentially populate single particle and single
hole states respectively.

In the right energy regime direct reactions also have
a very useful characteristic …



  

Early on in the study of transfer reactions induced
by light ions – initially deuterons – it was found that
the angular distributions had characteristic shapes:

Note the forward peaked
shapes common to both,
but also that the shape 
of the AD for 16O(d,p) to 
the g.s (a) is completely
different to that to the 1st 
excited state (b) of 17O!

8 MeV deuteron beam
from the University of
Liverpool cyclotron. Gas
target and nuclear
emulsion detection.

Taken from Burrows, Gibson and Rotblat, Phys. Rev. 80, 1095 (1950).



  

The significance was immediately realised: forward 
peaking = direct reaction mechanism.

Further, S. T. Butler showed that the shape of the
angular distribution was directly related to the
angular momentum of the transferred neutron, ℓn

Taken from Butler, Phys. Rev. 80, 1095 (1950)



  

This had enormous consequences for the subsequent 
development of direct reaction studies. 

As Burrows et al. put it in their original note: “… it 
appears that (d, n) and (d, p) angular distributions may 
be of use in determining the spins and parities of 
ground and excited states in many nuclei.”

It was quickly realised that Butler's theory was in
fact equivalent to the plane wave Born approximation.
This naturally prompted interest in examining the use
of the distorted wave Born approximation (DWBA),
first formulated in this context by Tobocman in 1958.



  

A significant problem with Butler theory was that not 
only were the shapes of the angular distributions only 
reproduced in general outline, but the magnitudes of 
the calculated cross sections bore no relation to the 
measured ones.

DWBA solved both problems. We may write the 
expression for the transfer angular distribution as :

dσ(θ,E)/dΩ = SJLFJL(θ,E)

where FJL(θ,E) is a factor containing all the reaction
information (dependence on angle and energy) while
SJL contains structure information – the spectroscopic
factor



  

We may calculate FJL with an appropriate theory.
The spectroscopic factor is then determined by
normalising the calculated to the measured 
angular distribution. With Butler theory the SJL

obtained made little or no sense.

It is important to note that SJL is not an observable,
either in the quantum mechanical sense or in the
sense that it can be measured. It is a derived
quantity and therefore model dependent, a fact
that should always be borne in mind. The phrase
“experimental spectroscopic factor” is in fact
nonsense in the literal sense.  



  

In this lecture we shall examine how FJL is calculated
using DWBA. 

This will involve us in presenting a few equations
again, but only to illustrate some of the quantities
we need to calculate.

To begin with, DWBA comes in two “flavours”: zero
range and finite range. Each “flavour” can be
formulated in one of two ways, known as post and
prior. Which one we choose will depend on the type
of reaction we wish to model.

What do these expressions actually mean in terms
of the formulation of DWBA?



  

We gave the basic expression for the DWBA transition 
amplitude for the reaction A(a,b)B back in lecture 3.
Writing it in a slightly different notation we have: 

In the second form the nuclear matrix element is
separated from the distorted waves; the round
brackets denote integration over all variables 
independent of rα and rβ and ψα = ψaψA, ψβ = ψbψB



  

The coordinate system used for the transfer reaction 
A(a,b)B where a = b + x and B = a + x is defined as
follows:



  

W is the residual interaction and may be written in
one of two forms. In post form it is: 

Wβ ≡ VbB − Uβ = Vbx + (VbA − Uβ)

where Uβ is the OMP in the exit channel, Vbx is the 
potential that binds x onto b to form a (and which
should be consistent with the wave function ψa)
and VbA is an effective interaction between b and A.

For prior form we have:

Wα ≡ VaA − Uα = VxA + (VbA − Uα)



  

In light ion reactions it is usual to retain only Vbx or
VxA, since the terms in brackets should cancel to
a very large extent. If this is done, it is most accurate
to use post for stripping and prior for pickup. 

If we further put rβ = λ rα we have zero range DWBA.
This is equivalent to “collapsing” the coordinate
system to a straight line. This is also most accurate
if post and prior form are used for stripping and
pickup respectively.

Zero range is adequate for light ions, indeed there 
are correction factors for finite range effects which,
if applied, give almost identical results to full finite
range DWBA. 



  

Zero range obviates the need to evaluate a 
6-dimensional integral in calculating the transition 
matrix, so was particularly important in the early
days.

For heavy ions, only full finite range DWBA is really
adequate. The neglect of the terms in brackets
(sometimes called the “remnant” terms) in the 
expressions for W is also no longer a good
approximation, although careful choice of the 
effective interaction VbA (and the continued use of
post for stripping and prior for pickup) can minimise
their importance. Modern codes such as FRESCO
will include them and they can be important.



  

Finally, we come to how a DWBA calculation is
performed in practice. What are the “ingredients”
that we need to assemble?

1) We need the distorted waves in the entrance
    and exit channels. These are calculated for us
    by the DWBA code from the appropriate OMPs

2) The residual interaction W. This usually boils 
    down simply to the choice of the binding 
    potential Vbx (post) or VxA (prior)

3) The nuclear wave function overlaps (ψB,ψA) 
    and (ψa,ψb) 



  

There is some overlap between 2) and 3) in actual
applications, since the wave functions required in
3) are usually calculated by the code with binding
potentials that should be consistent with the Vbx

or VxA of 2) depending on the choice of post or
prior form.

Further, for 3) we also need to define 3 quantum
numbers: N ℓ j. To illustrate what these mean in the 
most simple way we will take a specific example, 
the 12C(d,p)13C deuteron stripping reaction.

Let us suppose that we want to analyse deuteron
stripping to the ground state of 13C. 



  

We know that the ground state of 13C has spin and
parity Iπ = ½−.  In our standard nomenclature, the
core nucleus for this state is A = 12C in its 0+ ground
state and the transferred particle x is a neutron, of
intrinsic spin and parity ½+. 

We therefore have B = A + x → 13C = 12C + n

If we now apply the rules governing addition of
angular momentum in quantum mechanics, we
see that to form 13C in a ½- state the neutron must
have an angular momentum relative to the 12C core
ℓ = 1 (we can exclude ℓ = 0, which could also give 
us a 13C spin of ½, since even ℓs give + ve parity).



  

So far, so good, but what is N and how do we fix
its value?

N is the number of nodes in the radial wave function
for the <13C|12C + n> overlap. It is also the principal
quantum number of the shell model level that the
transferred neutron is placed in to form the desired
state in 13C, in this case the ½- ground state:

1s1/2

1p3/2

1p1/2
We see that the obvious choice
is the vacant 1p1/2 orbital, so we 
finally have N = 1, ℓ = 1, j =½



  

We can perform a similar exercise for the excited
states of 13C. For example, the first excited state
at an excitation energy of 3.089 MeV is known to 
have spin-parity Iπ =  1/2+, which may be formed
by placing the transferred neutron in the vacant
2s1/2 orbital:

1s1/2

1p3/2

1p1/2

1d5/2

2s1/2

1d3/2 States like these are known as
single particle levels and are
preferentially populated in direct
reactions, one of the main plus
points of their use in structure
studies.



  

Finally, to calculate the wave function for the
<13C|12C + n> overlaps we need to specify a
12C + n binding potential. This is usually a (real)
Woods-Saxon well with some radius and 
diffuseness parameters, plus a spin-orbit part. 

By convention the spin-orbit term has the same
radius and diffuseness as the central Woods-Saxon
well and is of the Thomas type we encountered 
when we considered the optical model. It has a fixed
depth (often around 5-6 MeV).

The central well-depth is adjusted so that the binding
energy obtained is equal to the experimental value.



  

How do we choose the values for the radius and
diffuseness parameters? This is an important point,
as we shall see in the next lecture.

In practice, the choice is somewhat arbitrary. Common
values are: R = 1.25 x A1/3 fm, a = 0.65 fm. There is
no real physical justification for these time honoured
values but they give reasonable results.

With the “geometry” of the binding potential fixed
(and the spin-orbit term also fixed) and the N ℓ j values
specified the reaction code will search on the well
depth to give the correct binding energy.



  

This is what the resulting radial wave functions look 
like:



  

We must carry out the same exercise for the
projectile-like overlap, in our example: <d|n + p>.

These overlaps (for light-ion induced reactions)
are known, either empirically (from analyses of
large sets of data) or theoretically (calculated using
theoretical wave functions from structure theory).

In zero-range DWBA the projectile-like overlap is
reduced to a normalisation factor D0. Values of
D0 are well known for (d,p), (d,n), (p,d) and (n,d)
reactions, less well known for (d,t) and (d,3He) and
very imperfectly known for reaction like (3He,4He). 



  

For finite-range DWBA the full wave functions are
required, as for the target-like overlaps. Again,
these are well known for (d,p) etc. reactions but
less well defined for others (for heavy ion projectiles
we use the same procedure as for the target 
overlaps).

We now have all the ingredients we need to perform
a DWBA calculation and we shall look at how this is
done in detail in the next lecture, continuing with the
12C(d,p)13C reaction as our example.



  

Lecture 10: transfer reactions continued

In this lecture we shall look at how a DWBA analysis
is performed in reality, taking the 12C(d,p)13C reaction
at E

d
 = 30 MeV as our example.

Good data exist at this energy from Ohnuma et al.,
Nucl. Phys. A 448 (1986) 205. We will look at transfer
to four states in 13C: the 0.0 MeV 1/2−, the 3.09 MeV 
1/2+, the 3.68 MeV 3/2− and the 3.85 MeV 5/2+.

For direct, one-step transfer these states represent
a neutron in the 1p

1/2
, 2s

1/2
, 1p

3/2
 and 1d

5/2
 shell model

orbitals outside the 12C 0+ core. 



  

In this case the spins and parities of the final states
are all known, so calculating the wave functions
for the <13C|12C + n> overlaps is simple. We just 
need to choose the following:

1) An entrance channel d + 12C OMP 

2) Exit channel p + 13C OMPs (since the energy of
    the proton ejectile will be a function of E

x
 of the

    final state in 13C)

3) n + 12C and n + p binding potential parameters
    for finite range DWBA, D

0
 for zero range



  

For 1) and 2) we simply take the same potentials
as in the original analysis of Ohnuma et al. (often
the energy dependence of the exit channel OMP
is ignored and we use that for E

x
 = 0 MeV)

For the n + 12C binding potentials, we assume a
Woods-Saxon shape and radius parameters of
R = 1.25 x 121/3 fm, diffusenesses a = 0.65 fm,
plus a spin-orbit term of Thomas form with a depth
of 6.0 MeV. 

The depth of the central Woods-Saxon well is 
automatically adjusted by our DWBA code – 
FRESCO here – to give us the correct binding 
energies



  

For the n + p binding potential in finite range DWBA
we use that due to Reid, Ann. Phys. (N.Y.) 50, 441 
(1968). This gives a realistic deuteron wave function,
including the small D state component.

For zero range DWBA we take D
0
 = 1.55 x 104 MeV fm3 

and a finite range correction factor of  0.621 fm, a
popular choice since it is given as an example in the
DWUCK4 manual (a zero range DWBA code).

How do finite range and zero range DWBA compare
with each other and the data?



  

C2S = 0.77                              C2S = 1.62



  

C2S = 0.14                              C2S = 0.67



  

While zero range and finite range give similar results 
– the spectroscopic factors (C2S) are the same for
both calculations in each case – it has to be said
that they do not reproduce the measured ADs very 
well. This could be for multiple reasons:

1) Our choice of OMP in entrance and exit channel

2) Our choice of binding potential parameters 

3) DWBA is not an adequate theory here, the reaction
    mechanism is more complicated than simple one-
    step transfer 



  

Leaving aside 3) for the present (although the C2S
values suggest that it may be relevant, since none of
them are particularly close to 1.0, the expected value
for a pure single particle state) let us consider 1).

There are no d + 12C elastic scattering data at 30 MeV
but there are some at E

d
 = 29.5 MeV – close enough!

How well are they described by our OMP?

The answer is not too bad, but could do much better!

We should be able to improve on the description of
the d + 12C elastic scattering, but will this affect the
12C(d,p)13C results?



  Measured 29.5 MeV d + 12C elastic scattering plus result of Ohnuma et al.'s OMP



  

Improved fit to E
d
 = 29.5 MeV d + 12C elastic scattering

What impact does it have on the DWBA calculations?



  

Some slight improvement in shape for 1/2− state and C2S
values change, but not significantly better



  

No change to C2S values but shapes no better (slightly worse 
for 3/2− state)



  

Thus, the general conclusion is that the DWBA
description of the 12C(d,p)13C data is not improved 
by a better description of the entrance channel 
elastic scattering

What about the exit channel? There are data for
elastic scattering of 30.4 MeV protons from 13C,
close to the energy of the exit channel for populating
the 13C 1/2− ground state

What effect does replacing the exit channel OMP of
Ohnuma et al. have on the  DWBA? We retain the
“best fit” d + 12C OMP in the entrance channel …



  

Considerable improvement in shape of ADs, but still far 
from a good description



  

Shapes of ADs slightly worse, if anything



  

A general conclusion for this case seems to be that 
we can obtain some improvement by using OMPs
that give a better description of the relevant elastic
scattering (here mostly the exit channel) but we are
still some way from a satisfactory description.

Let us now consider point 2), the binding potential
parameters. We consider just the target-like case,
since the projectile overlap is well-known (and in the
zero range case is reduced to a normalisation factor
anyway, D

0
).

What effect does changing r
0
 over a reasonable

range have? Investigate effect of r
0
 = 1.0 and 1.5 fm



  



  



  

Only in the case of the 5/2+ state is the shape of
the AD improved. The main effect in each case is
to change the magnitude of the cross section, i.e.
the spectroscopic factor. 

This is in fact a general problem, since one of the
main pieces of information that we wish to extract
from direct reaction data of this type is the C2S
value. Since it is rather sensitive to the choice of
r

0
 and we do not have a reliable way of fixing this

parameter the uncertainties can be large …



  

We have looked at the effect of changing the details
of the input to the DWBA and it does not really solve
our problem. This suggests that we need a more
sophisticated theory to fit these data. Further support
for this comes from the spectroscopic factors.

How do our extracted values compare to a shell
model calculation? We compare to Cohen & Kurath,
Nucl. Phys. A 101, 1 (1967) – an old but still useful
calculation.

State C2S from (d,p) C2S from CK

0.00 MeV 1/2− 0.72 0.61

3.09 MeV 1/2+ 1.20

3.68 MeV 3/2− 0.13 0.19

3.85 MeV 5/2+ 0.80



  

Agreement is reasonable, given the poor description
of the ADs by DWBA (CK did not calculate the C2S
values for the positive parity states since their model
only allowed states up to the p-shell).

What is significant is that the 3/2− state has a small
C2S, much smaller than 1.0. This is therefore not
well described as a neutron in a shell model level
outside the 12C core in its ground state. 

A glance at the shell model scheme explains this:



  

In the ground state of 12C the 1p
3/2

 sub-shell is full! The 2p
3/2

 sub-shell is

too far away to be a credible substitute, therefore the low-lying 3/2− state
in 13C must have a more complicated structure => DWBA cannot describe
transfer to this state well



  

The poor description of the 3/2− state by the DWBA
is thus explained by its structure; there is little
overlap between the ground state of 12C and this
state in 13C.

Therefore, to describe this state (and the better to
describe the other states) we need to use a more
sophisticated theory of the reaction which will allow
the inclusion of 2-step (or more) reaction paths, e.g.
excitation of the 4.44 MeV 2+ state in 12C followed
by transfer of a neutron to form states with structures
like: <13C|12C* + n>



  

To do this we need to use the coupled channels
Born approximation (CCBA) or the coupled reaction
channels (CRC) formalisms. We shall look at these
next week. We will also briefly consider the rôle of
the weak binding energy of the deuteron and how it
can be taken into account.

Finally for this lecture, a word about spectroscopic
factors.

You will have noticed that I have used the label “C2S”
in the text of this lecture to denote the spectroscopic
factor; why have I done so and what is this 
mysterious C?



  

C2S is just another label for the quantity S
LJ

 that
we met when first discussing transfer reactions.
In DWBA it is simply the normalisation factor
between the calculated and measured transfer
angular distributions.

It is sometimes written in this fashion where the
C denotes the isospin Clebsch-Gordan coefficient
for the overlap. To make things easier, we keep to
our example of <13C|12C + n>. For overlaps of this
type C is defined as the Clebsch:



  

T and T
z
 are well known for the neutron: T = T

z
 = ½

For 12C and 13C, T
z
 is easily calculated by the

following relation:

T
z
 = (N − Z)/2

This applies to all nuclei (N.B. the sign conventions
for T

z
 are as used in nuclear physics).

For T, we must look it up for the state in question.
For light nuclei, the following site gives the values:
 

http://www.tunl.duke.edu/nucldata/

http://www.tunl.duke.edu/nucldata/


  

For 12C, T
z
 = 0 and we find that T = 0 too for the

ground state.

For 13C, T
z
 = (7 − 6)/2 = ½ and we find that T = ½ 

too for all the states we are considering

We therefore need the following Clebsch:

< 0 0 ½ ½ | ½ ½> 

These are tabulated and there are also on-line
calculators, e.g. 

http://personal.ph.surrey.ac.uk/~phs3ps/cgjava.html



  

In this case, C = 1.0 so C2S = S. It is not always so,
and C is often < 1.0.

Why bother with this extra complication since the
number we extract from our data is C2S anyway?

Simply that often calculated spectroscopic factors
are just S and do not contain the C2 factor (this is
the case for the Cohen and Kurath values cited
earlier) so if we wish to compare our empirical values
with, say, the shell model then we need to be aware
of this and calculate the relevant C2.

In the next lecture, more sophisticated reaction 
theories.



  

Lecture 11: transfer reactions continued

We saw last time how DWBA was unable to provide
a satisfactory description of the 12C(d,p)13C reaction
at E

d
 = 30 MeV.

This suggests a more complicated reaction mechanism 
than the simple, single step weak process supposed by 
DWBA.

We saw that at least in one case (the 3/2− excited state)
the shell model level sequence supports this possibility
since the 1p

3/2
 level is already full in 12C. 



  

There are two main possible sources of complex, i.e. 
more than single step, reaction paths in the d + 12C
system:

i) 12C has a strongly coupled excited state (2+) at
    E

x
 = 4.44 MeV. We can envisage excitation of this

    state followed by transfer as a two step process

ii) the deuteron is weakly bound (S
n
 = S

p
 = 2.22 MeV)

    so breaks up easily. This process can interfere 
    with the (d,p) transfer so absorbing its effect into
    the OMP may not be adequate

Of course, both these effects may contribute …



  

We begin by looking at the first possibility, inelastic
excitation followed by transfer. How do we handle it?

The simplest way is to retain DWBA for the transfer
step and to use coupled channels theory for the
inelastic scattering step. This is known as the Coupled
Channels Born Approximation, or CCBA

We use CC for the inelastic excitation since it is
strong (therefore DWBA not in principle suitable) and
retain DWBA for the transfer as it is assumed weak

How can we visualise CCBA versus DWBA?



  

DWBA

CCBA

One transfer path. One spectroscopic factor to determine

Two transfer paths. Two (or more) spectroscopic amplitudes to determine



  

Before considering the extra ingredients needed
in CCBA compared to DWBA we should explain
what we mean by a spectroscopic amplitude in
this context and why there could be more than two
(surely two transfer paths, two amplitudes?)

First of all, the spectroscopic amplitudes (SA) are
the square roots of the spectroscopic factors we
met last time, i.e. SA = √(C2S)

They are therefore signed (can be +ve or −ve) and
the signs matter since we may have interference
between different reaction paths



  

Secondly, we may have more than two of them to 
determine here thanks to our old friends the rules for 
angular momentum addition in quantum mechanics

As an illustration, take 12C(d,p)13C to the 3.68 MeV
3/2− state of 13C. As we saw last time, for transfer
onto the 0+ state of the 12C core the neutron can
only occupy a p

3/2
 shell model level. Since the core

spin J
core

 was 0 it didn't enter consideration.

For the two step path, J
core

 = 2, so we now have to
“couple” to the core spin too when we determine which
shell model levels can give us a 3/2− state in the final
13C nucleus.



  

Let us see how it works: we have a 12C core in its
2+ state and we wish to form a 13C in a 3/2− state 
by transferring a neutron onto the 12C core.

The neutron must have odd ℓ with respect to the
12C core to give a −ve parity 13C state, so it has to 
have ℓ = 1 or 3 here (5 is too large).

Starting with ℓ = 1. We can have j = 1/2 or 3/2 
(since 1 + 1/2 = 3/2, 1/2 quantum mechanically)

1/2 can couple to 2 (the core spin) to give: 5/2, 3/2 
3/2 can couple to 2 to give: 7/2, 5/2, 3/2, 1/2
We can have components like: 12C 2+  1p

1/2

                                                  12C 2+  1p
3/2



  

Following the  same procedure for ℓ = 3:
we can have j = 7/2 or 5/2

5/2 can couple to 2 to give: 9/2, 7/2, 5/2, 3/2, 1/2
7/2 can couple to 2 to give: 11/2, 9/2, 7/2, 5/2, 3/2

We can have components like: 12C 2+  1f
5/2

                                                  12C 2+  1f
7/2

Thus we now (in principle) have five amplitudes
to determine instead of one spectroscopic factor 
− allowing more reaction paths comes at a price …



  

What else do we need? The entrance channel OMP
is now replaced by a coupled channels calculation
exactly as we did previously. We have a deformed
optical potential that explicitly includes the 0+ → 2+

coupling in 12C. 

Take the B(E2) value from the literature (it is well 
known) and ideally fix the nuclear deformation 
length by fitting d + 12C inelastic scattering data at 
E

d
 = 30 MeV (data exist at 28 MeV – close enough).

Exit channel OMP remains unchanged. We just need
to specify the extra reaction paths in the input file.



  

If we do all this, we can now (in principle) search 
on the 5 SAs until we get the best fit to the data. 

This is rather a lot of parameters to fix from one
angular distribution (the shade of von Neumann has
come back to haunt us!) so we will omit the two ℓ = 3
components and search on the remaining three SAs:

These are for the following components:

12C 0+  1p
3/2

, 12C 2+  1p
1/2

 and 12C 2+  1p
3/2

If we do this for the 3.68 MeV 13C 3/2− state what 
do we find?



  

SAs are: 12C 0+  1p
3/2

 = 0.373, 12C 2+  1p
1/2

 = −0.881,

and 12C 2+  1p
3/2

 = 0.454



  

We see that the CCBA fit to the data is much better
(at the price of an additional two adjustable parameters
with all that this implies) and in this case the SA for the
12C 0+  1p

3/2
 component has not changed. 

However, the reproduction is still far from perfect: the
calculated AD is too structured compared to the
measured one.

This could be due to the missing ℓ = 3 components,
components built on other excited states of the 12C
core (e.g. the 9.63 MeV 3−) or the effect of deuteron
breakup.



  

This provides a convenient point to consider the
question of how the effects of deuteron breakup
may be explicitly included in a transfer calculation.

The simplest way is to use the adiabatic model.
[Johnson and Soper, Phys. Rev. C 1 (1970) 976, Harvey and 

Johnson, Phys. Rev. C 3 (1971) 636] 

This model keeps the DWBA formalism but the
deuteron distorted wave (entrance channel for (d,p)
or exit channel for (p,d) reactions) is redefined. It
still describes the motion of the centre of mass of 
the neutron and proton but they may no longer be 
in the form of a bound deuteron.



  

This is done by introducing an adiabatic potential
into a standard DWBA code in lieu of the usual
deuteron OMP. The potential is adiabatic because
it ignores the “excitation energy” of the deuteron
compared to its incident energy.

We will not discuss how the adiabatic potential is
calculated here, but there are approximations
available that make it a simple job.

Therefore, the adiabatic model should work best
for higher incident energies. In fact, it is found to
work well even at fairly low E

d
 values, due to the

errors in the assumptions largely cancelling each
other out.



  
Taken from Harvey and Johnson, Phys. Rev. C 3 (1971) 636

Note that the adiabatic model in this form
will not describe the deuteron elastic
scattering (remember that the “deuteron”
distorted wave was redefined), although 
this is possible within the framework of the
adiabatic model theory [Johnson and 
Soper. Phys. Rev. C 1 (1970) 976]

The use of the adiabatic model can lead to significant 
improvement in the description of experimental data, 
e.g. 54Fe(d,p)55Fe at 23 MeV:



  

The disadvantage of the adiabatic model is that
it can only be used as a replacement for DWBA;
it cannot be adapted to CCBA scenarios. Also, it
is not suitable for use within the coupled reaction
channels (CRC) formalism, which we shall discuss
presently.

A  more accurate theory for the modelling of breakup
exists, known as the coupled discretised continuum
channels (CDCC) method, due to Rawitscher, Phys.
Rev. C 9, 2210 (1974). We will not go into details
here, but suffice it to say that it is an extension of the
standard CC theory to include couplings to the
continuum.



  

CDCC can be used to model the deuteron breakup
in a CCBA-type calculation (target excitation can be
included) and is also suitable for use in a CRC
calculation. 

It can also be used in other reactions involving 
deuterons such as (d,t), (d,3He), (d,6Li) etc., which
the adiabatic model can not.

CDCC is therefore more flexible than the adiabatic
model but requires much more computing time since
the continuum couplings are explicitly included in a
CC type calculation (and there are usually many of
them).



  

The final refinement that we can make in our reaction
model is to treat the transfer step(s) on the same
footing as the other couplings, i.e. no longer treat
them as weak so that they can be handled with
perturbation theory, as in DWBA. 

To do this we use so-called coupled reaction channels
or CRC. In principle this is CC theory with the extra
complication that the exit channel now belongs to a
different partition. 

In practice it is handled by iterating a series of DWBA 
steps until the result converges, since “full” CRC 
would be very computationally intensive (the two 
methods give identical results).



  

CRC is available in FRESCO and is usually used
in finite range form. In addition to including the
“remnant” term we mentioned in the first lecture
on transfer reactions there is a correction that
must also be included in a CRC calculation, the
non-orthogonality correction. 

This is a term in the residual interaction that arises
in CRC because the exit channel wave functions
are not orthogonal to those in the entrance channel
(they form a distinct complete set by themselves).

It is not always small and usually cannot be 
neglected. It can be handled by FRESCO.



  

Putting it all together: keeping to our 12C(d,p)13C
example how well can we describe these data
using the most sophisticated model of the reaction
mechanism we have available?

This is CC for the inelastic excitation of the 12C
2+ state, CDCC for deuteron breakup and CRC 
for transfer steps, including two step via the 12C
2+ state.

How well does all this apparatus work in reality?



  

30 MeV 12C(d,p) to the 0.0 MeV 1/2− state in 13C

Description is good: shape
of AD well reproduced

There are significant effects
on the extracted SA too,
compared to DWBA or CCBA



  

30 MeV 12C(d,p) to the 3.09 MeV 1/2+ state in 13C

Description is good: shape
of AD well reproduced

There are significant effects
on the extracted SA too,
compared to DWBA or CCBA
(mainly due to the fact that
only the “full” reaction theory
can reproduce accurately the
shape of the AD).



  

30 MeV 12C(d,p) to the 3.85 MeV 5/2+ state in 13C

Description is not as good: 
shape of AD not so well 
reproduced

There are significant effects
on the extracted SA too,
compared to DWBA or CCBA



  

We see that the “full” model of the reaction in 
general leads to a much improved description of
the data (there are still problems with the 5/2+ state)

Not only are the shapes of the ADs better reproduced
but there are also significant changes in the 
spectroscopic amplitudes (or factors) that we extract
from the normalisation of the theory curves to the
data.

Thus, failure of DWBA to describe transfer data can
indicate real physics – it may mean that we need to
use a more sophisticated reaction model because
the assumptions underlying DWBA are no longer valid



  

However, to avoid giving you the wrong impression,
DWBA works very well when the conditions are
fulfilled. As a case study, we take the 124Sn(d,p)125Sn
reaction at E

d
 = 9 MeV. 

These data also provide a good example of “typical” 
radioactive beam data (although 124Sn is effectively 
stable these data were taken in inverse kinematics 
as a test of a RIB set-up and analysis techniques).

Data from: Jones et al., Phys. Rev. C 70 (2004) 
067602



  

First, DWBA: no elastic scattering data available
at suitable energies, so global OMPs were used.

Mixture of 0.0 MeV 11/2−, 0.028 MeV
3/2+ and 0.215 MeV 1/2+ states

2.8 MeV 7/2− state

DWBA describes data well, how does it compare to
a CDCC/CRC analysis?



  

DWBA and CDCC/CRC give essentially identical results in this case, 
provided that the CDCC/CRC calculation reproduces the d + 124Sn 
elastic scattering predicted by the optical model potential used in the 
DWBA



  

Finally, a word about spectroscopic factors/amplitudes

We saw in the first lecture on transfers that the shape
of the angular distribution can give us the ℓ value of the
final state, an important piece of information (it places
limits on the spin of the state).

Another useful piece of information is the spectroscopic
factor. As we said earlier, it should always be borne in
mind that this is not an observable and is therefore
model dependent. 

We have seen that the exact value obtained can 
depend on the reaction model used.



  

It is also sensitive to the binding potentials used
to bind the transferred particle to the core nucleus.
It is most sensitive to the radius of this potential,
which is not usually fixed with any degree of
certainty.

In CCBA and CRC we may also have to determine
several spectroscopic amplitudes from a single AD,
so the situation is even worse.

However, we can distinguish with certainty between
small and large spectroscopic factors, so we can
say which states are good single particle levels



  

As usual in direct reaction work, we must be careful
about making detailed comparisons of absolute
numbers extracted from experiment using some
model with what is calculated by a structure theory:
they are not necessarily the same thing!

In the final lecture we consider transfer reactions
induced by heavy ions and why they are interesting.



  

Lecture 12: heavy ion induced transfer reactions

The previous two lectures have concentrated on
transfer reactions induced by light ions. We have
seen that such reactions are important sources of
nuclear structure information due to their 
selectivity (preferential population of single-particle
states).

In this final lecture we shall look at transfer reactions
induced by heavy ions. Here the motivation is rather
different since we are mainly concerned with the
reaction mechanism and the effect of such couplings
on the elastic scattering.



  

It is possible to use heavy ion induced transfer
reactions for spectroscopy, but this is not often
done due to the need to fix the “projectile-like”
spectroscopic factor(s)/wave functions as well
as the “target-like” (usually the ones of interest).

e.g. 208Pb(12C,11B)209Bi could be used to look at 
“single proton” levels in 209Bi instead of the (3He,d) 
reaction but the <12C|11B+p> overlap is much less 
well known than the <3He|d+p> one.

There can be advantages to using heavy ion 
projectiles though, due to Q matching



  

Heavy ion induced transfer reactions are observed
to have a strong dependence on the Q value of
the reaction. This Q-window effect is due to the
requirement that for maximum transfer amplitude
the orbits of the incoming and outgoing particles
before and after the transfer are continuous.

This means that for a given reaction there is an
optimum Q value that favours it. For neutron
transfers this is always 0 MeV. For proton transfers
it is negative for stripping (as in our (12C,11B) example)
and positive for pickup (e.g. the (12C,13N) reaction).



  

There are several ways of calculating Q
opt

, one of the 
simplest being:

for the reaction A(a,b)B. A more accurate expression,
due to Brink is:

R is the distance of closest approach, m the mass 
of the transferred particle and v the relative velocity
of the target and projectile



  

There is also an optimum angular momentum
transfer, formulated by Brink:

It is the difference in angular momenta between
the incoming and outgoing orbits whose distance
of closet approach is R. 

If we take R = strong absorption radius then L
a
 

and L
b
 are those angular momenta for which the 

appropriate elastic scattering amplitudes are given 
by |S

La
| ≈ |S

Lb
| ≈ 1/√2



  

These matching conditions mean that with careful
choice of the projectile it is possible preferentially to
populate particular levels with heavy ion reactions.

This can be useful for spectroscopic purposes, but
as we said previously, it is difficult to extract 
absolute spectroscopic factors from such reactions.

The relative C2S value are fairly well fixed, since
the normalisation of calculation to data fixes the
product S

a
S

A
 and S

a 
is the same for all transitions, 

so the relative values should match well with those 
obtained from light ion reactions.



  

Turning now to a practical example, we choose the
208Pb(12C,11B)209Bi single proton stripping reaction
at an incident energy of 97.9 MeV.

Data for this reaction exist for 5 states in 209Bi:
0.0 MeV 9/2−, 0.90 MeV 7/2−, 1.61 MeV 13/2+,
2.84 MeV 5/2− and 3.12 MeV 3/2−. There are also
data for the elastic scattering in the entrance and
exit channels at suitable energies.

We first repeat the original DWBA analysis in
K. S. Toth et al., Phys. Rev. C 14 1471 (1976).



  

Entrance and exit channel distorted waves are
calculated using the OMP parameters given in
the original paper. We do the same thing for the
bound state wave functions for the projectile and
target overlaps.

For the projectile overlap the procedure is one that
is found to work well for light, p-shell projectiles.
We take the calculated spectroscopic factors of
Cohen and Kurath, Nucl. Phys. A 101, 1 (1967) 
and use a Woods-Saxon well of radius 1.25 x A1/3

and diffuseness 0.65 fm. 

N.B. here C2 ≠ 1 since the isospin Clebsch-Gordan 
coefficient for 12C = 11B + p is 1/√2



  

How well does DWBA work in this case? Full
finite-range post formulation (zero-range is not
appropriate for heavy ions) + remnant term.



  



  



  

The overall description is reasonable, although
there are a few things to note:

1) If we use the full remnant term post and prior
    give identical results

2) Omission of the remnant term makes a
    significant difference, cf. dashed green and
    solid black curves

3) There is a systematic shift to larger angles of
     the calculated transfer peak compared to the
     measured one (most notable for the 3.12 MeV
     3/2− state).



  

The <209Bi|208Pb+p> spectroscopic factors turn
out to be quite reasonable when compared to
other measurements and theoretical values, 
although the latter comparison is always 
subjective.

However, the discrepancy in the peak positions
suggests some problems with simple DWBA.

It is possible that choice of OMP affects the result,
and choice of bound state potential radius may do
so too. These possibilities were checked and had 
little influence on the shape of the transfer ADs. 



  

This suggests that the reaction mechanism may be
more complicated than the simple one-step direct
assumed in DWBA.

Two-step mechanisms – inelastic excitation of
states followed by transfer – can be more important
for heavy ions, since in addition to excitation of the
target-like nuclei it is now possible to excite the
projectile-like nuclei too.

In the 208Pb(12C,11B)209Bi reaction there are possible
collective excitations of the 208Pb core (we expect
excitations of 209Bi to be weaker) plus the 12C projectile 
and 11B ejectile (these should also be weaker)



  

We consider the two-step process of excitation of
the 12C 4.44 MeV 2+ state followed by stripping
to the ground state of 11B. This should be the most
important such process, since the 12C 2+ is the
most strongly coupled excited state.

The C-K spectroscopic factor for the <12C(2+)|11B+p>
overlap is reasonably large, so the effect of this new
reaction path may be significant.

We include inelastic excitation of the 12C 4.44 MeV
2+ state in the usual way using the CC formalism
and retain DWBA for the transfer steps (CCBA).



  

We also take care to readjust the OMP in the
entrance channel to recover the same elastic
scattering AD from the CC calculation as we had
from the original OM one.

Recall that in CCBA we need the spectroscopic
amplitudes. C-K only give spectroscopic factors,
so we do not a priori know the relative sign of the
<12C(0+)|11B+p> and <12C(2+)|11B+p> SAs.

We therefore treat the sign as a parameter and
try both +ve and −ve to see which gives the best
description of the transfer data. 



  

How well does CCBA describe the 208Pb(12C,11B) data?



  



  



  

CCBA is able to provide a very good description of
all the data, with the exception of stripping to the
3.12 MeV 3/2− state where there is still a mis-match
between the position of the measured peak in the
AD and the calculated one (but it is much improved
compared to the DWBA result).

The reaction mechanism does indeed seem to be
more complicated than single-step (and perhaps
even three-step or more paths contribute to stripping
to the 3.12 MeV 3/2− state).

There are two things to note from this result:



  

1) Heavy ion transfer reactions can be sensitive to 
    details of the reaction mechanism

2) The relative sign of the <12C(0+)|11B+p> and
    <12C(2+)|11B+p> spectroscopic amplitudes is
    unambiguously fixed by this analysis; it must
    be negative otherwise the peak position shifts
    to larger angles, i.e. in the wrong direction

We do gain some useful spectroscopic information
from this heavy ion transfer after all, in addition to 
the interest of pinning down the reaction mechanism. 



  

Another motivation for studying heavy ion transfer
reactions is their possible influence on the elastic
scattering. For these studies we must use the CRC
theory, since in both DWBA and CCBA the transfer
step is treated as a perturbation and so cannot
influence the elastic scattering.

We will take as an example some new data for a
radioactive beam, 8He, incident on a 208Pb target
at 22 MeV, close to the Coulomb barrier.

Energies close to the Coulomb barrier are where
coupling effects (of any sort) are most important
for the elastic scattering.



  

8He should prove an interesting case. The Q matching
window should favour 1n-stripping to low-lying levels
of 209Pb, which are known to be good single-particle
levels.

Also, the <8He|7He+n> and <209Pb|208Pb+n> 
spectroscopic factors are well known, so a calculation
of the 208Pb(8He,7He)208Pb stripping reaction should 
give a realistic result.

This is an important point since we cannot check the
accuracy of the calculated transfer angular 
distributions in this case since 7He is unbound (and
coincidence measurements with neutrons are difficult)



  

There are at least two schools of thought as to how to
go about a CRC study of transfer coupling effects on
the elastic scattering:

1) Take a “bare” OMP consisting of a double-folded
    real part and an imaginary part that simulates
    absorption due to compound nuclear processes
    (fusion) only. Then build up all other sources of
    absorption by coupling explicitly with CC (inelastic)     
    and CRC (transfer) formalisms to all the important
    channels.

2) Start from the OMP that fits the elastic scattering
    and readjust its parameters each time you add a
    coupling to recover the fit.



  

Both approaches have their merits, and in principle
if one could always include all the important channels
in the calculation they would eventually give the same
results.

In our test case, 8He + 208Pb, we will use the second
approach since we are interested in the effect of
coupling to a single process – 1n-stripping – only. 
The effect of coupling to other channels is absorbed
into the entrance channel OMP.

What does the full CRC calculation look like, and 
what effect does switching off the 1n-stripping 
couplings have on the elastic scattering?



  

The description is good, and the effect of the transfer
couplings is strong:



  

In fact, the 1n-stripping in this case accounts for
about 365 mb out of a total reaction cross section
of 1517 mb, so about 24 %.

Thus it seems reasonable that the coupling effect
on the elastic scattering is large (however, it is not
always so, and a large cross section does not
guarantee a large coupling effect).

In fact, the 1n-stripping coupling accounts for about
38 % of the total imaginary potential strength as
well as making a significant contribution to the real
part.



  

Thus we see that heavy ion induced transfer reactions
can also be interesting from the point of view of their
influence on the elastic scattering.

This is one of the major motivations for the study of
heavy ion reactions in general – their coupling effects
on elastic scattering can be important and are often
quite sensitive probes of the properties of the
colliding nuclei.



  

We have finally come to the end of this series of
lectures on direct reactions and their analysis. I
hope that I have given a flavour of the interest and
motivation for such studies.

I have not touched on the interesting area of 
breakup reactions and their analysis, mainly 
through lack of time. 

There are some other details of reaction analysis
techniques that I have not mentioned, but you 
should now have enough knowledge to understand
a direct reaction paper and assess it critically.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

