Naruszenie symetrii izospinowej przez oddziaływanie silne w jądrach o $N \sim Z$

P. Bączyk J. Dobaczewski M. Konieczka T. Nakatsukasa K. Sato W. Satuła

Zakład Teorii Struktury Jąder Atomowych, Instytut Fizyki Teoretycznej Wydział Fizyki, Uniwersytet Warszawski

Seminarium *Fizyka Jądra Atomowego* Warszawa, 24 listopada 2016

Plan prezentacji

1) Wstęp

- Oddziaływanie nukleon-nukleon
- Koncept izospinu
- Izobaryczne stany analogowe

2) Definicje

• Różnice energii wiązania:

MDE i TDE

• Co jest do zrobienia?

3) Teoria

- Oddziaływanie Skyrme'a
- Klasyfikacja Henley'a i Millera
- Implementacja w modelu DFT

4) Wyniki

- Pierwsze wyniki bez Coulomba
- Procedura dopasowania
- Odtwarzanie MDE i TDE

5) Perspektywy

• obliczenia mas • form

• formuła IMME 🛛 •

MED
 prze

• przejścia γ i β

Oddziaływanie nukleon-nukleon (NN)

$$V_{nn} \stackrel{?}{=} V_{pp} \stackrel{?}{=} V_{pn}$$

elektromagnetyczne			
Coulomb			
\uparrow			
różne ładunki			
neutron	q=0		
proton	q=+1		

jądrowe silne

z eksperymentów rozproszeniowych: $a_{nn} \neq a_{pp} \neq a_{pn}$ \uparrow różny skład kwarkowy (różne masy i ładunki *u* i *d*) neutron *udd* proton *uud*

- Jakie są tego konsekwencje w jądrach atomowych?
- Czy możemy znaleźć zadowalający opis teoretyczny?

Koncept izospinu

Isospin nukleonu:
$$t = \frac{1}{2}$$

Rzut isospinu:

neutron $t_z = +\frac{1}{2}$ proton $t_z = -\frac{1}{2}$

Rzut całkowitego izospinu dla jądra o masie A = N + Z:

$$T_z = \sum_{i=1}^A t_z(i) = \frac{N-Z}{2},$$

$$T_z = -T, -T+1, \ldots, T-1, T,$$

gdzie T jest całkowitym isospinem

Izobaryczne stany analogowe (IAS)

bez oddziaływania Coulomba

Izobaryczne stany analogowe (IAS)

z oddziaływaniem Coulomba

Łamanie symetrii ładunkowej (CSB)

Łamanie symetrii ładunkowej (CSB)

Mirror Displacement Energy (MDE)

Łamanie niezależności ładunkowej (CIB)*

Łamanie niezależności ładunkowej (CIB)*

Triplet Displacement Energy (TDE)

Status badań łamania symetrii izospinowej (ISB)

Potrzeba użycia oddziaływania NN o charakterze ISB jest dobrze ugruntowana. Potwierdzają to:

- obliczenia (Skyrme-)Hartree-Focka,
- rachunki ab initio,
- obliczenia modelu powłokowego.

Co nowego możemy wnieść?

- implementacja w modelu opartym o DFT
- pełne, nieperturbacyjne uwzględnienie siły Coulomba
- przejrzyste traktowanie członów ISB
- stosowalność do jąder o dowolnej parzystości N i Z (łącznie z jądrami nieparzysto-nieparzystymi)
- wiele efektów ISB w jednym modelu

Oddziaływanie Skyrme'a

Krótka charakterystyka

- rozwinięcie niskopędowe
- poszczególne człony poprawiające opis oddziaływania: centralny, spin-orbita, zależny od gęstości...
- bardzo dobry opis własności jąder w szerokim zakresie mas
- tylko 10 parametrów

Parametryzacje użyte w pracy:

- SV_T: wywiedziona z hamiltonianu (brak członu zależnego od gęstości), odpowiednia do rzutowania i mieszania konfiguracji w modelu NCCI (No-Core Configuration Interaction), dopasowane człony tensorowe
- SkM*: dopasowana w szczególności do barier rozszczepienia, dobrze opisuje własności jąder
- SLy4: dobrze ugruntowana, ogólnie stosowana parametyzacja

Klasyfikacja Henley'a i Millera

klasa I – zachowująca symetrię izospinową

$$V_I^{NN}(i,j) = a + b ec{ au}(i) \cdot ec{ au}(j)$$

• klasa II – łamiąca niezależność, ale zachowująca symetrię ładunkową

$$V_{II}^{NN}(i,j) = c \left[\tau_3(i)\tau_3(j) - \frac{1}{3}\vec{\tau}(i)\cdot\vec{\tau}(j) \right]$$

klasa III – łamiąca symetrię ładunkową

$$V_{III}^{NN}(i,j) = d [\tau_3(i) + \tau_3(j)]$$

• klasa IV – mieszająca izospin już na poziomie dwuciałowym

$$V_{IV}^{NN}(i,j) = \mathbf{e} \left[\vec{\sigma}(i) - \vec{\sigma}(j) \right] \cdot \vec{L} \left[\tau_3(i) + \tau_3(j) \right] \\ + f \left[\vec{\sigma}(i) \times \vec{\sigma}(j) \right] \cdot \vec{L} \left[\vec{\tau}(i) \times \vec{\tau}(j) \right]_3$$

E.M. Henley, and G.A. Miller, Mesons in Nuclei (North Holland, Amsterdam, 1979), p. 405

Oddziaływanie:

- do tej pory uwzględnione klasa II i klasa III
- nowe człony zaimplementowane jako efektywne poprawki zerowego zasięgu do oddziaływania Skyrme modyfikujące część centralną

$$V^{ISB}(i,j) = V^{Skyrme}(i,j) + V^{II}(i,j) + V^{III}(i,j)$$

$$V^{II}(i,j) = \underbrace{\frac{1}{2} t_0^{II} \delta(\vec{r}_i - \vec{r}_j) \left(1 - x_0^{II} \hat{P}_{ij}^{\sigma}\right)}_{jak \text{ człon centralny Skyrme'a}} \underbrace{[3\tau_3(i)\tau_3(j) - \vec{\tau}(i) \cdot \vec{\tau}(j)]}_{z \text{ klasyfikacji H.-M.}}$$

$$V^{III}(i,j) = \underbrace{\frac{1}{2} t_0^{III} \delta(\vec{r}_i - \vec{r}_j) \left(1 - x_0^{III} \hat{P}_{ij}^{\sigma}\right)}_{z \text{ (T}_3(i) + \tau_3(j)]} \underbrace{[\tau_3(i) + \tau_3(j)]}_{z \text{ (T}_3(i) + \tau_3(j)]}$$

Gęstości energii:

$$\mathcal{H}^{II} = \frac{1}{2} t_0^{II} \left(1 - x_0^{II} \right) \left[\rho_n^2 + \rho_p^2 - 2\rho_n \rho_p - 2\rho_{np} \rho_{pn} - \vec{S_n^2} - \vec{S_p^2} + 2\vec{S_n} \cdot \vec{S_p} + 2\vec{S_{np}} \cdot \vec{S_{pn}} \right]$$

$$\mathcal{H}^{III} = \frac{1}{2} t_0^{III} \left(1 - x_0^{III} \right) \left(\rho_n^2 - \rho_p^2 - \vec{S_n}^2 + \vec{S_p}^2 \right)$$

Gęstości energii:

$$\mathcal{H}^{II} = \frac{1}{2} t_0^{II} \left(1 - x_0^{II} \right) \left[\rho_n^2 + \rho_p^2 - 2\rho_n \rho_p - 2\rho_{np} \rho_{pn} - \vec{S_n^2} - \vec{S_p^2} + 2\vec{S_n} \cdot \vec{S_p} + 2\vec{S_{np}} \cdot \vec{S_{pn}} \right]$$

$$\mathcal{H}^{III} = \frac{1}{2} t_0^{III} \left(1 - x_0^{III} \right) \left(\rho_n^2 - \rho_p^2 - \vec{S_n}^2 + \vec{S_p}^2 \right)$$

Wnioski:

• parametry x_0^{II} i x_0^{III} są zbędne

Gęstości energii:

$$\mathcal{H}^{II} = \frac{1}{2} t_0^{II} \left(1 - x_0^{II} \right) \left[\rho_n^2 + \rho_p^2 - 2\rho_n \rho_p - 2\rho_{np} \rho_{pn} - \vec{S_n^2} - \vec{S_p^2} + 2\vec{S_n} \cdot \vec{S_p} + 2\vec{S_{np}} \cdot \vec{S_{pn}} \right]$$

$$\mathcal{H}^{III} = \frac{1}{2} t_0^{III} \left(1 - x_0^{III} \right) \left(\rho_n^2 - \rho_p^2 - \vec{S_n}^2 + \vec{S_p}^2 \right)$$

Wnioski:

• parametry x_0^{II} i x_0^{III} są zbędne

 \bullet klasa II wymaga gęstości mieszanych $\rho_{\textit{np}}$ i $\rho_{\textit{pn}}$

Gęstości energii:

$$\mathcal{H}^{II} = \frac{1}{2} t_0^{II} \left(1 - x_0^{II} \right) \left[\rho_n^2 + \rho_p^2 - 2\rho_n \rho_p - 2\rho_{np} \rho_{pn} - \vec{S_n^2} - \vec{S_p^2} + 2\vec{S_n} \cdot \vec{S_p} + 2\vec{S_{np}} \cdot \vec{S_{pn}} \right]$$

$$\mathcal{H}^{III} = \frac{1}{2} t_0^{III} \left(1 - x_0^{III} \right) \left(\rho_n^2 - \rho_p^2 - \vec{S_n}^2 + \vec{S_p}^2 \right)$$

Wnioski:

- parametry x_0^{II} i x_0^{III} są zbędne
- \bullet klasa II wymaga gęstości mieszanych $\rho_{\textit{np}}$ i $\rho_{\textit{pn}}$

działanie:

klasa II:

klasa III: (with $t_0^{III} < 0$)

Metoda isocranking

K. Sato, J. Dobaczewski, T. Nakatsukasa, and W. Satuła, Phys. Rev. C 88, 061301(R) (2013)

Narzędzie – isocranking

- przybliżone rzutowanie na izospin w formalizmie mieszania pn
- analogiczny do modelu cranking
- opis stanu $|T = 1, T_z = 0 >$ przez ewolucję rozwiązań $|T = 1, T_z = \pm 1 >$

Pierwsze testy dla A = 42bez oddziaływania Coulomba

Obliczenia wymagające poprawy członami ISB

tryplety T = 1

dublety $T = \frac{1}{2}$

Do odtworzenia wartości eksperymentalnych MDE i TDE brakuje 200-500 keV.

Obliczanie energii wiązania

Rozbieżności rzędu **kilku MeV**! Czy model jest w stanie odtworzyć MDE/TDE?

Obliczanie energii wiązania

Rozbieżności rzędu **kilku MeV**! Czy model jest w stanie odtworzyć MDE/TDE?

 $MDE = BE(T, T_z = -T)$ $- BE(T, T_z = +T)$

Obliczanie energii wiązania

Rozbieżności rzędu kilku MeV! Czy model jest w stanie odtworzyć MDE/TDE? $MDE = BE(T, T_z = -T)$ $-BE(T, T_z = +T)$

Wszystkie korelacje niezależne od izospinu **znoszą się**!

Dane do dopasowania

Obliczenia dla:

- dubletów $T = \frac{1}{2}$ o masach A = 11 - 75 \Rightarrow MDE
- trypletów T = 1
 o masach A = 10 − 58
 ⇒ MDE i TDE

Eksperymentalne wartości energii wiązania wzięte z AME2012 M. Wang *et al.*, CPC **36**, 1603 (2012)

Energie stanów T = 1 $T_z = 0$ zaczerpnięte z ENSDF

http://www.nndc.bnl.gov/ensdf/

Rozseparowanie dopasowania

obliczenia bez oddziaływania Coulomba

Rozseparowanie dopasowania

obliczenia bez oddziaływania Coulomba

Parametr t_0^{II} może być dopasowany do TDE, parametr t_0^{III} do MDE.

 MDE jest liniowe ze względu na parametr t₀^{III} (poprawka perturbacyjna)

- MDE jest liniowe ze względu na parametr t₀^{III} (poprawka perturbacyjna)
- Dokładne odtworzenie danych eksperymentalnych wymaga użycia różnych wartości t^{III}

- MDE jest liniowe ze względu na parametr t₀^{III} (poprawka perturbacyjna)
- Dokładne odtworzenie danych eksperymentalnych wymaga użycia różnych wartości t^{III}₀
- Końcowa wartość t_0^{III} wraz z niepewnością jest wyznaczana z jednowymiarowego dopasowania minimalizującego χ^2

- MDE jest liniowe ze względu na parametr t₀^{III} (poprawka perturbacyjna)
- Dokładne odtworzenie danych eksperymentalnych wymaga użycia różnych wartości t^{III}₀
- Końcowa wartość t_0^{III} wraz z niepewnością jest wyznaczana z jednowymiarowego dopasowania minimalizującego χ^2

To samo dotyczy TDE i parametru $t_0^{\prime\prime}$.

Wyniki dopasowania

Parametry z niepewnościami:

Część ISB jest w dużym stopniu niezależna od pierwotnej parametryzacji!

Wyniki MDE w dubletach i trypletach parametryzacja SV

Jeden parametr odtwarza MDE w dubletach i trypletach!

Wyniki TDE w trypletach parametryzacja SV

Oscylacje A = 4n versus A = 4n + 2 odtworzone po raz pierwszy!

Związek z długościami rozpraszania

Założenie

proporcjonalność siły oddziaływania i odpowiedniej długości rozpraszania

Relacja

$$\begin{array}{l} t_{0}^{t1} \\ t_{0}^{TI} \\ \Delta a_{CSB} \\ \Delta a_{CSB} \\ \Delta a_{CSB} \\ \Delta a_{CB} \\ \Delta a_{CB$$

Wyniki

Parametryzacja	$t_0^{\text{II}} / t_0^{\text{III}}$
SV	-2.3 ± 0.9
SkM*	-4.0 ± 1.5
SLy4	-4.4 ± 1.8

Izobaryczna formuła masowa (IMME)

$$BE_{A,T}(T_z) = a + bT_z + cT_z^2 = \sum_{n \le 2T} a_n(A,T)Q_n(T,T_z)$$

$$Q_0 = 1$$
, $Q_1 = T_z$ i $Q_2 = \frac{1}{2} (3T_z^2 - T(T+1))$

Nasze podejście odtwarza wartości eksperymentalne i jest zgodne z Green's function Monte Carlo (GFMC)!

J. Carlson et al., Rev. Mod. Phys. 87, 1067 (2015)

Naruszenie symetrii izospinowej...

Izobaryczna formuła masowa (IMME)

$$BE_{A,T}(T_z) = a + bT_z + cT_z^2 = \sum_{n \le 2T} a_n(A,T)Q_n(T,T_z)$$

$$Q_0 = 1$$
, $Q_1 = T_z$ i $Q_2 = \frac{1}{2} (3T_z^2 - T(T+1))$

Nasze podejście odtwarza wartości eksperymentalne i jest zgodne z Green's function Monte Carlo (GFMC)!

J. Carlson et al., Rev. Mod. Phys. 87, 1067 (2015)

Naruszenie symetrii izospinowej...

Przewidywania mas dla astrofizyki

$$BE(T, T_z = -T) = MDE + BE(T, T_z = +T)$$

Cel:

badanie linii oderwania protonu dla obliczeń nukleosyntezy K. Kaneko *et al.*, Phys. Rev. Lett. **110**, 172505 (2013)

Możliwe przewidywania dla:

- dubletów $T = \frac{1}{2}$ o masie do A = 87
- trypletów *T* = 1 o masie do *A* = 98

	Deficyt masy (keV)	
Jądro	My	AME12
⁴⁴ V	23751(49)	24120(180)
⁵² Co	34439(50)	33990(200)#
⁵⁶ Cu	38691(49)	38240(200)#

Najnowszy pomiar dla ⁵²Co: 34361(8) keV X. Xu *et al.*, Phys. Rev. Lett. **117**, 182503 (2016)

Nasze przewidywanie jest zgodne $(1.6\sigma)!$

Porównywanie schematów stanów wzbudzonych

S. M. Lenzi et al., Phys. Rev. Lett. 87, 122501 (2001)

MED i TED

Mirror Energy Difference:

$$MED(J) = E(J, T, T_z = -T) - E(J, T, T_z = +T)$$

Triplet Energy Difference:

$$TED(J) = E(J, T = 1, T_z = -1) + E(J, T = 1, T_z = +1)$$
$$-2E(J, T = 1, T_z = 0)$$

Zagadnienie intensywnie badanie w ramach modelu powłokowego M. Bentley *et al.*, PRC **92**, 024310 (2015)

Nasze podejście

sposób na wyznaczenie schematu poziomów wzbudzonych – cranking lub mieszanie konfiguracji NCCI

W.Satuła et al., Phys. Rev. C 94, 024306 (2016)

 obliczenia izospinowo wzbronionych przejść γ, np. ⁶⁴Ge

E. Farnea et al., Phys. Lett. B 551, 56 (2003)

 obliczenia izospinowo wzbronionych przejść γ, np. ⁶⁴Ge

E. Farnea et al., Phys. Lett. B 551, 56 (2003)

 obliczenia izospinowo wzbronionych przejść γ, np. ⁶⁴Ge

E. Farnea et al., Phys. Lett. B 551, 56 (2003)

 obliczenia izospinowo wzbronionych przejść γ, np. ⁶⁴Ge

E. Farnea et al., Phys. Lett. B 551, 56 (2003)

 porównywanie sił przejść E1 w parach jąder zwierciadlanych, np. ³¹P – ³¹S, ³⁵Cl – ³⁵Ar

N. S. Pattabiraman et al., Phys. Rev. C 78, 024301 (2008)

 obliczenia izospinowo wzbronionych przejść γ, np. ⁶⁴Ge

E. Farnea et al., Phys. Lett. B 551, 56 (2003)

 porównywanie sił przejść E1 w parach jąder zwierciadlanych, np. ³¹P – ³¹S, ³⁵Cl – ³⁵Ar

N. S. Pattabiraman et al., Phys. Rev. C 78, 024301 (2008)

Nasze podejście

mieszanie funkcji falowych w ramach **NCCI**

W.Satuła et al., Phys. Rev. C 94, 024306 (2016)

Badanie rozpadu eta

Cel:

weryfikacja unitarności macierzy CKM poprzez wyznaczenie elementu macierzowego $V_{ud}\,$

$$ft = \frac{K}{G_V^2 |M_F^{(\pm)}|^2} = \frac{K}{G_V^2 \cdot 2(1 - \delta_C)}$$

Obliczenia:

element macierzowy superdozwolonego przejścia eta w trypletach ${\cal T}=1~(0^+
ightarrow 0^+)$ i dubletach ${\cal T}=1/2$

W. Satuła et al., Phys. Rev. C 86, 054316 (2012)

M. Konieczka et al., Phys. Rev. C 93, 042501 (2016)

Nasz wkład:

wyznaczenie wpływu członów ISB na δ_C

Podsumowanie

Co zostało zrobione?

- implementacja członów ISB w modelu DFT
- MDE i TDE odtworzone w modelu z dwoma wolnymi parametrami
- badanie związków z teoriami ab initio

Co planujemy zrobić?

- przewidywania mas dla astrofizyki
- badanie formuły IMME
- obliczenia MED w pasmach rotacyjnych
- badanie przejść E1
- ullet ustalenie wpływu sił ISB na rozpady eta