Shape coexistence along Z=82 and the stability of the N=126 shell closure studied using laser ionization spectroscopy

Piet Van Duppen KU Leuven, Belgium

- Basics of laser spectroscopy
- Shape coexistence in the neutron-deficient mercury isotopes studied with "In Source Laser Spectroscopy"
- Comparison with Mean-Field and with Monte Carlo Shell Model calculations
- "In-gas jet Laser Ionization Spectroscopy": stability of the N=126 shell closure.

82

126

- Outlook with the S3 Low Energy Branch project at GANIL SPIRAL
- Conclusion

184

Laser Spectroscopy: basics

Laser Spectroscopy: basics

Laser Spectroscopy: basics

Shape coexistence in heavy nuclei: initial indications

5 Bonn,- PLB 38 (1972), Hannachi,- ZP A370 (1988), Ma,- PLB167 (1986) Janssens,- PLB131 (1983), Cole,- PRL37 (1976) Laser ionization spectroscopy of mercury isotopes

Protons

zed counts (arb. units)

Charge radii of mercury isotopes

DFT – UNEDF1

• Skyrme functional UNEDF1so [1]

 \rightarrow Fine tuned SO and pairing to reproduce No spectroscopy

- Monte-Carlo Shell Model calculation (Y. Tsunoda & T. Otsuka)
 - ¹³²Sn core NN, PP[1], PN [2]
 - eff. ch. π = 1.6e / eff. ch. v = 0.6e / spin quenching = 0.9
 - $\pi: 1g_{7/2} \rightarrow 1i_{13/2}$ (11 proton orbitals) / $v: 1h_{9/2} \rightarrow 1j_{15/2}$ (13 neutron orbitals)

[1] B.A. Brown, Phys. Rev. Lett. 85, 5300 (2000).
[2] T. Otsuka et al., Phys. Rev. Lett. 104, 012501 (2010).

11

Leuven Isotope Separator On-Line (LISOL) facility: In-Gas Laser Ionization and Spectroscopy of RIBs (IGLIS)

13

Production & first laser spectroscopy tests of Ac

¹⁹⁷Au(²⁰Ne-145 MeV,4-5n)^{212,213}Ac ¹⁹⁷Au(²²Ne-143 MeV,4-5n)^{214,215}Ac

K. Blaum et al., Phys. Scr. T152 (2013) 014017

Limitations of in-gas cell laser spectroscopy:

- Pressure shift and broadening
- Doppler broadening
- Ion-gas interactions

In-Gas Jet Laser Ionization Spectroscopy

- stopping in the buffer gas cell
- formation of a gas jet through a 'de Laval' nozzle
- homogenous, low-density, cold get
- transport of the ions in Radio Frequency Ion Guides \rightarrow detection system

R. Ferrer et al, Nature Commun. 8, 14520 doi: 10.1038/ncomms14520 (2017) Yu. Kudryavtsev et al, NIMB61724, (2016) pp. 345-352

17

Nuclear Moments of Ac²²⁷†

MARK FRED AND FRANK S. TOMKINS, Chemistry Division, Argonne National Laboratory, Lemont, Illinois

AND

WILLIAM F. MEGGERS, National Bureau of Standards, Washington, D. C. (Received April 11, 1955) Phys. Rev. 98, 1514

The values derived for the moments from the conventional treatment of hfs in intermediate coupling are +1.1 nm and -1.7×10^{-24} cm². The experimental error is believed to be less than 10 percent, but it is difficult to estimate the total error because of the configuration interaction and the large relativity corrections. No correction for closed shell distortion was made.

It is hoped that improved values can be obtained, but meanwhile it appears useful to offer the present results. We should like to acknowledge helpful discussions with Dieter Kurath and R. E. Trees.

Multi-Monfiguration Dirac Fock atomic physics calculations: ²²⁷Ac

Magnetic dipole moments and electical quadrupole moments

- Shell model calc. are in good agreement with experimental quadrupole moments (using atom. physics input) and magnetic dipole moments
- ²⁰⁸Pb good core for shell model predictions (N=126)

IGLIS @ KU Leuven

IGLIS @ KU Leuven

• Planar Laser Induced Fluorescence (PLIF) - technique

→ <u>temperature, velocity and density jet 'maps'</u>

• 'de Laval' nozzle: Mach $5 \rightarrow$ v and T jet 'maps'

IGLIS @ S3LEB - SPIRAL2 - GANIL

S³-LEB general layout

- Shape coexistence in the neutron-deficient mercury isotopes
 - local phenomena
 - Monte Carlo Shell Model calculations: $\pi h_{9/2}$ and $\nu i_{13/2}$ orbitals
- In-gas jet Laser Ionization Spectrosopy
 - stability of the N=126 shell closure
 - improved spectral resolution and efficiency
- Exploration of the N=Z line and the heavy element region with the S3 Low Energy Branch project at GANIL – SPIRAL2

S. Sels,¹,^{*} B. Andel,² A. Andreyev,³ A. E. Barzakh,⁴ J. Billows,⁵ K. Blaum,⁶ T. E. Cocolios,¹ J. Cubiss,³ T. Day Goodacre,⁵ J. Dobaczewski,⁷ G. Farooq-Smith,¹ D.V. Fedorov,⁴ V. N. Fedosseev,⁸ K. T. Flanagan,⁵ L. Gaffnev,^{9,1} L. Ghys,^{10,1} P-H. Heenen,¹¹ M. Huyse,¹ K. M. Lynch,⁸ V. Manea,⁶ B. A. March,⁸ Y. Martinez,¹ T. M. Mendonca,^{8,12} T. Otsuka,^{13,14,1} A. Pastore,³ J. P. Ramos,^{8,15} W. Ryssens,¹¹ R. E. Rossel,^{8,16} S. Rothe,^{8,16} L. Schweikhard,¹⁷ T. Stora,⁸ P. Spagnoletti,⁹ C. Van Beveren,¹ P. Van Duppen,¹ E. Verstraelen,¹ F. Wienholtz,¹⁷ and A. Zadvornava¹ ¹KU Leuven, Instituut voor Kern- en Stralingsfyisca, B-3001 Leuven, Belgium ²Department of Nuclear Physics and Biophysics. Comenius University, 84248 Bratislava, Slovakia ³Department of Physics, University of York, York Y010 5DD, UK ⁴Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina 188300, Russia ⁵School of Physics and Astronomy. The University of Manchester, Manchester M13 9PL, UK ⁶Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany ⁷Institute of Theoretical Physics, Warsaw University, ul. Hoza 69 PL-00681 Warsaw, Poland ⁸CERN. CH-1211 Geneve 23. Switzerland ⁹School of Engineering and Computing, University of the West of Scotland, Paisley, PA1 2BE, UK ¹⁰Belgian Nuclear Research Center SCK•CEN, Boeretang 200, B-2400 Mol, Belgium ¹¹PNTPM, CP229, Universite Libre de Bruxelles, B-1050 Bruxelles, Belgium ¹²IFIMUP and IN - Institut of Nanosciences and Nanotechnologies, University of Porto, Rua do Campo Alegre, 687, 4169 007 Porto, Portugal ¹³Department of Physics, The University of Tokyo, Bunkyo-ku, 113-0033 Tokyo, Japan ¹⁴National Superconducting Cyclotron Laboratory. Michigan State University, East Lansing, MI 48824, USA ¹⁵Powder Technology Laboratory, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland ¹⁶Insitut fürPhysik, Johannes Gutenberg-Universität, 55122 Mainz, Germany ¹⁷Institut für Physik. Ernst-Moritz-Arndt-Universität. 17487 Greifswald. Germany

KU Leuven LISOL team

P. Creemers, L.P. Gaffney, L. Ghys, C. Granados, M. Huyse, Yu. Kudryavtsev, Y. Martínez, E. Mogilevskiy, S. Raeder, S. Sels, P. Van den Bergh, P. Van Duppen, A. Zadvornaya

GANIL- IPN Orsay – LPC Caen:

B. Bastin, D. Boilley, Ph. Dambre, P. Delahaye, P. Duchesne, X. Fléchard, S. Franchoo, N. Lecesne, H. Lu, F. Lutton, Y. Merrer, B. Osmond, J. Piot, O. Pochon, H. Savajols, J. C. Thomas, E. Traykov

University of Mainz:

R. Heinke, T. Kron, P. Nauberreit, P. Schoenberg, K. Wendt

GSI: M. Laatiaoui

JYFL University of Jyväskylä: I. Moore, V. Sonnenschein

RILIS-ISOLDE: S. Rothe TRIUMF: P. Kunz, J. Lassen, A. Teigelhoefer

