The nuclear charge radius of 26m Al and its implication for V_{ud} in the quark mixing matrix

199192

UW Nuclear Physics Seminar

Peter Plattner

CERN

Outline

- Motivation
- Determination of V_{ud}
- Introduction to laser spectroscopy and isotope production
- Results of measurements
- Outlook and conclusion

Binding Energy

- Binding energy per nucleon for most abundant stable isotopes of each element
- Certain elements show enhanced stability compared to immediate neighbours

Binding Energy over Nuclear Chart

Empirical Proton Shell Gap

Empirical Neutron Shell Gap

Empirical Neutron Shell Gap

Standard Model of Particle Physics

Standard Model of particle physics

very successful theory in physics

Predicts sub-atomic particles further comprised of 3 generations of quarks

Cabibbo-Kobayashi-Maskawa (CKM) matrix describes mixing of quarks via weak interaction

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

CERN

https://en.wikipedia.org/wiki/Cabibbo%E2%80%93Kobayashi %E2%80%93Maskawa_matrix#/media/File:Quark_weak_inter actions.svg

CKM Unitarity

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

- Absolute square (i.e. $|V_{ij}|^2$) of each CKM-entry is probability of weak decay of j-type quark into i-type quark
- Standard Model of particle physics predicts unitarity of CKM matrix
- Deviation from unitarity would imply incomplete picture of Standard model
- Unitarity: $V_{CKM} \cdot V_{CKM}^{T} = I_3$
- In particular: $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$
- Deviation from unitarity: $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1 \Delta_{CKM}$

Tension to Unitarity

Currently recommended values by PDG:

CÉRN

CKM Unitarity (2)

Determination of couplings for:

> Superallowed $0^+ \rightarrow 0^+ \beta$ decays

Determination of V_{ud}

• V_{ud} can be determined via $\mathcal{F}t$ value of superallowed $0^+ \rightarrow 0^+ \beta$ decays $|V_{ud}|^2 = \frac{K}{2G_F^2(1 + \Delta_R^V)\overline{\mathcal{F}t}}$

Nuclear charge radius r_c important experimental input into theoretical calculation of isospin-symmetry-breaking corrections
 δ := f(r -)

$$\delta_c \coloneqq f(r_c, \dots)$$

CER

Importance of charge radius of ^{26m}AI

- Weighted mean $\overline{\mathcal{F}t}$ of 15 precision cases used to calculate V_{ud} $|V_{ud}|^2 = \frac{K}{2G_F^2(1 + \Delta_R^V)\overline{\mathcal{F}t}}$
- *Ft* value of ^{26m}Al

 \succ Most accurately known of 15 isotopes used to calculate $\overline{\mathcal{F}t}$

Importance of charge radius of ^{26m}Al

- Accuracy of *Ft* value of ^{26m}Al coming from
 - Small uncertainty on ft
 - Small uncertainty on nuclear structure and isospin-symmetry breaking corrections
 - \geq Lowest numerical correction on combined $\delta_{NS} \delta_c$

Laser Spectroscopy

- Hyperfine transitions in atoms or ions yield information about
 - ➢Nuclear spin
 - >Magnetic dipole and electric quadrupole moments of nuclei
 - Isotope shifts and nuclear charge radii

Hyperfine Spectrum

Isotope Shift

- Isotope shift IS = difference of centroid frequencies for different isotopes
- Used to calculate difference in mean square charge radii between isotopes

ISOLDE

- Located at CERN
- Two target stations can be irradiated with up to 2 uA of 1.4 GeV protons from proton synchrotron booster (PSB)
- Isotopes produced via nuclear reactions in target material
- Then ionised and transported to experimental setup

Source: http://cds.cern.ch/record/1693046/files/arXiv:1404.0515.pdf

Ionisation

- Resonance ionisation laser ion source (RILIS)
- Electron exited through several resonant transition steps until ionization
- Very element specific
- Ionisation efficiency enhancement of factor ~10-100 (varies for different schemes for different elements)

Image from: http://cds.cern.ch/record/576847?In=en

Isotope Selection and Bunching

- Mass selection via High Resolution Separator (HRS) by two dipole magnets
- Offers mass resolving power of ~5000
- Injected into helium buffer gas filled Paul trap (ISCOOL)
- Used as cooler-buncher to accumulate isotopes before transporting bunches to experiment

Collinear Laser Spect

frequency [MHz]

- Ions and laser collinearly overlapped via election
- Reduced doppler spread (<100MHz) due to " 30keV
- Bunched beam allows for time gating to incre background by factor of ~10 000

Collinear Laser Spectroscopy

- Post-acceleration leads to frequency shift in ion rest frame
- Charge exchange with sodium to neutralize ions
- Measure fluorescence photons of resonant transitions

Laser System

- Used transition: $3s^2 3p \ ^2P_{3/2}^{\circ} \rightarrow 3s^2 4s \ ^2S_{1/2}$ provided by frequency doubled Matisse Ti:Sa ring cavity laser
- Frequency stabilised by WSU-10 wavemeter
- Regularly calibrated by HeNe laser

Hyperfine Spectra

- Ion extraction 0 and 6s after proton trigger
- Decrease in isomer intensity in fit consistent with half-life

$$\succ N_2 = N_1 \cdot \left(\frac{1}{2}\right)^{\frac{6S}{t_1/2}}$$

IGISOL

- Second set of measurements performed at IGISOL, Jyväskylä
- Known to have more favorable isomer : ground state ratio for ^{26,26m}Al
 25

Collinear Laser Spectroscopy at IGISOL

- Similar overall configuration as COLLAPS
- Laser and ions injected anti-collinearly
- CEC also filled with sodium
- Single photomultiplier compared to quad configuration at COLLAPS

Hyperfine Spectra

27

■ Clear presence of isomer in Al I P_{1/2} → D_{3/2} transition

Hyperfine Spectra

Isotope Shift

Isotope Shift [MHz]		
IGISOL	379.7{5.5}[2.2]	
COLLAPS	376.5{1.7}[3.7]	
weighted avg.	377.5(3.4)	

- Statistical and systematic uncertainties combined in quadrature for each experiment
- Combination of both datasets as weighted average

• Isotope shifts $\delta v^{27,26}$, $\delta v^{27,26m}$ used to calculate difference in mean square nuclear charge radii $\delta \langle r^2 \rangle^{27,A}$ between ^{26,26m}Al and ²⁷Al reference

$$\delta \langle r^2 \rangle^{27,A} = \frac{\delta \nu^{27,A}}{F} - \frac{M}{F} \frac{m_A - m_{27}}{m_{27} \cdot (m_A + m_e)}$$

- Depends on
 - \geq Respective nuclear masses m_A , electron mass m_e
 - >Atomic mass shift factor M
 - Field shift factor F

King plot

- If enough (>=3) stable isotopes with absolute charge radii are known
- Transformation of previous equation leads to linear relation $\mu_{27,A} \cdot \delta v^{27,A} = F \cdot \mu_{27,A} \cdot \delta \langle r^2 \rangle^2 \, ^A + M$
- Aluminium: only 1 stable isotope
- Determination of F and M through atomic calculations necessary (higher uncertainty)

RMS Charge Radii of aluminium isotopes

 Absolute charge radius of ²⁷Al from Barrett equivalent radius obtained by muonic spectroscopy and charge density from electron scattering measurements

Nuclear Charge Radius and $\mathcal{F}t$

- Nuclear charge radius of ^{26m}Al: 3.130(15) fm
- 4.5 statistical standard deviations from extrapolated value
- First extrapolation by same number of standard deviations for radial overlap correction of ISB correction

	Old values from [1]	New Values
^{26m} Al nuclear charge radius	3.04(2) fm	3.130(15) fm
${\cal F}t$ of 26m Al	3072.4(1.1) s	3071.4(1.0) s
$\overline{\mathcal{F}t}$	3072.24(1.85) s	3071.96(1.85) s

[1] J. C. Hardy, I. S. Towner, Physical Review C 2020, 102.

CERN

 Shifts the result of unitarity test closer towards unitarity by ~1/10 standard deviations

 $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.99848(70) \rightarrow 0.99856(70)$

 Motivates further studies of nuclear charge radii in other superallowed β emitters with so-far unknown charge radii:

Outlook

- Current status: charge radii of 7/15 superallowed beta emitters still unknown
- Ongoing efforts to determine ⁵⁴Co at IGISOL
- Further effect of charge radius of ^{26m}Al on Fermi function leading to necessary correction of ft-value
- \rightarrow Might result in another shift of average $\mathcal{F}t$ depending on magnitude of correction

Outlook

- Uncertainty of $|V_{ud}|^2$ currently dominated by systematic theoretical uncertainties on δ_{NS}
- If δ_{NS} were reduced to being non-dominant contribution, result of unitarity test would shift to ≈3σ
- New calculations for δ_{NS} correction (with abinitio methods) are being explored by TRIUMF's theory department
- Currently limited to lightest superallowed β emitters

CERN

Summary and Conclusion

- The charge radius of ^{26m}Al has been determined by Collinear Laser spectroscopy
- 4.5 standard deviations difference to extrapolated value used in isospin-symmetry-breaking corrections for V_{ud} of CKM matrix
- Extrapolation points towards slight shift towards CKM unitarity
- For more information: PRL 131, 222502 (2023) (DOI:10.1103/PhysRevLett.131.222502)

Thank you for your attention!

P. PLATTNER¹, E. WOOD², L. AL AYOUBI³, O. BELIUSKINA³, M. L. BISSELL^{4,5}, K. BLAUM¹, P. CAMPBELL⁴, B. CHEAL², R. DE GROOTE⁶, C. DEVLIN², T. ERONEN³, L. FILIPPIN⁷, R. F. GARCÍA RUZÍZ⁸, Z. GE³, S. GELDHOF⁶, W. GINS³, M. GODEFROID⁷, H. HEYLEN⁵, M. HUKKANEN³, J. D. HOLT^{9,10}, P. IMGRAM¹¹, A. JARIES³, A. JOKINEN³, A. KANELLAKOPOULOS⁶, A. KANKAINEN³, S. KAUFMANN¹¹, K. KÖNIG¹¹, Á. KOSZORÚS⁵, S. KUJANPÄÄ³, S. LECHNER⁵, S. MALBRUNOT-ETTENAUER⁵, R. MATHIESON², T. MIYAGI¹¹, I. MOORE³, P. MÜLLER¹¹, D. NESTERENKO³, R. NEUGART^{1,12}, G. NEYENS⁶, W. NÖRTERSHÄUSER¹¹, A. ORTIZ-CORTES³, H. PENTTILÄ³, I. POHJALAINEN³, A. RAGGIO³, M. REPONEN³, S. RINTA-ANTILA³, L. V. RODRÍGUEZ^{5,1}, J. ROMERO³, R. SÁNCHEZ¹³, F. SOMMER¹¹, M. STRYJCZYK³, V. VIRTANEN³, L. XIE⁴, Z. Y. XU⁶, X. F. YANG^{6,14}, AND D. T. YORDANOV¹⁵

¹ Max Planck Institute for Nuclear Physics, Heidelberg, Germany
 ² University of Liverpool Department of Physics, Liverpool, United Kingdom
 ³ Department of Physics, University of Jyväskylä, Jyväskylä, Finland
 ⁴ Department of Physics Astronomy, University of Manchester, Manchester, United Kingdom
 ⁵ ISOLDE, CERN Experimental Physics Department, Switzerland
 ⁶ Institute for Nuclear and Radiation Physics, KU Leuven, Leuven, Belgium
 ⁷ Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing (SQUARES), Université libre de Bruxelles, Brussels, Belgium
 ⁸ Massachusetts Institute of Technology, Cambridge, MA, USA
 ⁹ TRIUMF, Vancouver, Canada
 ¹⁰ Department of Physics, McGill Universität Darmstadt, Germany
 ¹² Institut für Kernchemie, Universität Mainz, Mainz, Germany
 ¹³ GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
 ¹⁴ School of Physics and State Key Laboratory of Nuclear Physics and Technology, Orsay, France

Thanks to COLLAPS, IGISOL, ISOLDE

KU LEUVEN