The nuclear charge radius of ^{26m}Al and its implication for V_{ud} in the quark mixing matrix

122192

UW Nuclear Physics Seminar

Peter Plattner

CERN

Outline

- **Motivation**
- Determination of V_{ud}
- **Introduction to laser spectroscopy and isotope production**
- **Results of measurements**
- **Outlook and conclusion**

Binding Energy

- **Binding energy per** nucleon for most abundant stable isotopes of each element
- **Certain elements show**
enhanced stability enhanced stability compared to immediate neighbours

Binding Energy over Nuclear Chart

Empirical Proton Shell Gap

Empirical Neutron Shell Gap

Empirical Neutron Shell Gap

Standard Model of Particle Physics $\frac{1801}{1801}$

Standard Model of particle physics

 \triangleright very successful theory in physics

 \triangleright predicts sub-atomic particles further comprised of 3 generations of quarks

interaction

$$
V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}
$$

CERN

https://en.wikipedia.org/wiki/Cabibbo%E2%80%93Kobayashi %E2%80%93Maskawa_matrix#/media/File:Quark_weak_inter actions.svg

CKM Unitarity

$$
V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}
$$

- Absolute square (i.e. $|V_{ij}|^2$) of each CKM-er $2₁$ $6₁$ $6₁$) of each CKM-entry is probability of weak decay of j-type quark into i-type quark **Standard Model of particle physics predicts unitarity**

Standard Model of particle physics predicts unitarity of CKM matrix

Standard Model of particle physics predicts unitarity of CKM matrix

Standard Model of particle **CKM Unitarity**
 $V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$

• Absolute square (i.e. $|V_{ij}|^2$) of each CKM-entry is probability of weak decay of

j-type quark into i-type quark

• Standard Model of
-
-
- Unitarity: $V_{CKM} \cdot V_{CKM}^T = I_3$ ଷ
- In particular: $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$ $|u s|$ + $|v_{ub}|$ = 1 $1^2 + |V|, |2| = 1$ $_{ub}$ $=$ \perp $\frac{2}{1}$ 1
- Deviation from unitarity: $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 =$ $|u_S|$ + $|v_{ub}|$ - 1 - $1^2 + |V|$, $|1^2 = 1 - \Lambda$ $ub \vert -1 - \Delta_{CKM}$ $2=1-\Lambda$ and **CKM**

[1] R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022) [2] J. C. Hardy, I. S. Towner, Physical Review C 2020, 102.

Tension to Unitarity

Currently recommended values by PDG:

CERN

CKM Unitarity (2)

Determination of couplings for:

Determination of V_{ud}

 V_{ud} can be determined via Ft value of superallowed 0^+ \rightarrow 0^+ β decays $\frac{1}{2}$ $\frac{1}{2}$

Nuclear charge radius r_c important experimental input into theoretical calculation of isospin-symmetrybreaking corrections

$$
\mathcal{S}_c := f(r_c, \dots)
$$

J. C. Hardy, I. S. Towner, Physical Review C 2020, 102.

CERI

Importance of charge radius of ^{26m}Al ¹⁹⁹¹³²

- Weighted mean \overline{Ft} of 15 precision cases used to $|V_{ud}|^2 = \frac{K}{2G_F^2(1+\Delta_R^V)\overline{\mathcal{F}t}}$ calculate $V_{\nu d}$
- Fr value of $26m$ Al

 \triangleright Most accurately known of 15 isotopes used to calculate $\overline{\mathcal{F}t}$

Importance of charge radius of ^{26m}Al

- Accuracy of Ft value of ^{26m}Al coming from
	- Small uncertainty on ft
	- Small uncertainty on nuclear structure and isospin-symmetry breaking corrections
	- \triangleright Lowest numerical correction on combined $\delta_{NS} \delta_{CS}$

Laser Spectroscopy

- **Hyperfine transitions in atoms or ions yield information about**
	- Nuclear spin
	- Magnetic dipole and electric quadrupole moments of nuclei
	- \triangleright Isotope shifts and nuclear charge radii

Hyperfine Spectrum

Isotope Shift

- I Isotope shift IS = difference of centroid frequencies for different isotopes
- **Used to calculate difference in mean square charge radii between isotopes**

ISOLDE

- Located at CERN
- Two target stations can be irradiated **ISOLDE**

Located at CERN

Two target stations can be irradiated

with up to 2 uA of 1.4 GeV protons from

proton synchrotron booster (PSB)

Isotopes produced via nuclear reactions proton synchrotron booster (PSB)
- Isotopes produced via nuclear reactions in target material
- **Then ionised and transported to** experimental setup

Source: http://cds.cern.ch/record/1693046/files/arXiv:1404.0515.pdf

Ionisation

- **Resonance ionisation laser ion source (RILIS)**
- Electron exited through several resonant transition steps until ionization
- Very element specific
- Ionisation efficiency enhancement of factor ~10-100 (varies for different schemes for different elements)

Image from: http://cds.cern.ch/record/576847?ln=en

Isotope Selection and Bunching 1804

- Mass selection via High Resolution Separator (HRS) by two dipole magnets
- Offers mass resolving power of ~5000
- Injected into helium buffer gas filled Paul trap (ISCOOL)
- Used as cooler-buncher to accumulate isotopes before transporting bunches to experiment

Collinear Laser Spect

- Ions and laser collinearly overlapped via electrostation and the supression 1000
- Reduced doppler spread (<100MHz) due to " 30keV
- Bunched beam allows for time gating to increase background by factor of ~10 000

Collinear Laser Spectroscopy

- **Post-acceleration leads to frequency shift in ion rest frame**
-
-

Laser System

- Used transition: $3s^23p^2P_{3/2}^{\circ}$ \rightarrow $3s^24s^2S_{1/2}$ provided by
- **Figure 1 Frequency stabilised by WSU-10 wavemeter**
-

Hyperfine Spectra

- Ion extraction 0 and 6s after proton trigger
- **Decrease in isomer intensity in fit consistent with half-life**

$$
\triangleright N_2 = N_1 \cdot \left(\frac{1}{2}\right)^{\frac{6s}{t_{1/2}}}
$$

IGISOL

-
- 25 and 26 an 26,26mAl

Collinear Laser Spectroscopy at IGISOL 180192

- **Similar overall configuration as COLLAPS**
- **Laser and ions injected anti-collinearly**
- CEC also filled with sodium
- Single photomultiplier compared to quad configuration at **COLLAPS**

Hyperfine Spectra

Clear presence of isomer in Al I $P_{1/2} \rightarrow D_{3/2}$ transition

Hyperfine Spectra

Isotope Shift

- Statistical and systematic uncertainties combined in quadrature for each experiment
- **Combination of both datasets as weighted average**

Isotope shifts $\delta v^{27,26}$, $\delta v^{27,26m}$ used to calculate difference in mean square nuclear charge radii $\delta \langle r^2 \rangle^{27,A}$ between ^{26,26m}Al and 27Al reference

$$
\delta \langle r^2 \rangle^{27,A} = \frac{\delta \nu^{27,A}}{F} - \frac{M}{F} \frac{m_A - m_{27}}{m_{27} \cdot (m_A + m_e)}
$$

- Depends on
	- Respective nuclear masses m_A , electron mass m_e
	- Atomic mass shift factor M
	- **Field shift factor F**

King plot

- If enough $(>=3)$ stable isotopes with absolute charge radii are known
- **Transformation of previous equation leads to**
linear relation $\mu_{27,A} \cdot \delta v^{27,A} = F \cdot \mu_{27,A} \cdot \delta \langle r^2 \rangle^2 A + M$ $\mu_{27,A} := \frac{m_{27} \cdot (m_A + m_e)}{m_A m_{27}}$ linear relation $\mu_{27,A} \cdot \delta \nu^{27,A} = F \cdot \mu_{27,A} \cdot \delta \langle r^2 \rangle^{2,A} + M$ **King plot**

stable isotopes with absolute

known

of previous equation leads to
 $\mu_{27,A} \cdot \delta \nu^{27,A} = F \cdot \mu_{27,A} \cdot \delta \langle r^2 \rangle^2$, $A + M$
 $\mu_{27,A} := \frac{m_{27} \cdot (m_A + m_e)}{m_A - m_{27}}$
 $\frac{\text{source is } \text{PGL}(122, 192502, 1915)}{\text{source is } \text{PGL}(122$
- **Aluminium: only 1 stable isotope**
- Determination of F and M through atomic $\left| \begin{array}{c} -1400 \\ -1400 \end{array} \right|$ calculations necessary (higher uncertainty)

RMS Charge Radii of aluminium isotopes¹⁸⁰¹⁹²

Absolute charge radius of 27 Al from Barrett equivalent radius obtained by muonic spectroscopy and charge density from electron scattering measurements

Nuclear Charge Radius and $\mathcal{F}t$

- Nuclear charge radius of 26mAl: 3.130(15) fm
- 4.5 statistical standard deviations from extrapolated value
- First extrapolation by same number of standard deviations for radial overlap correction of ISB correction **NUCIEAT CHATGE KAAIUS AND J**

ear charge radius of ^{26m}Al: 3.130(15) fm

tatistical standard deviations from extrapolated

extrapolation by same number of standard deviations

old values from [1] New Values
 $\frac{Old \text{ values from$

[1] J. C. Hardy, I. S. Towner, Physical Review C 2020, 102.

CERN

 Shifts the result of unitarity test closer towards unitarity by ~1/10 standard deviations ^ଶ = 0.99848(70) → 0.99856(70)

 $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.99848(70) \rightarrow 0.99856$

 Motivates further studies of nuclear charge radii in other superallowed β emitters with so-far unknown charge radii:

Outlook

- Current status: charge radii of 7/15 superallowed beta emitters

 Current status: charge radii of 7/15 superallowed beta emitters

 Ongoing efforts to determine ⁵⁴Co at IGISOL still unknown
- **Ongoing efforts to determine** ⁵⁴Co at IGISOL
- Further effect of charge radius of 2^{6} mAl on Fermi function leading to necessary correction of ft-value
- \blacksquare \rightarrow Might result in another shift of average $\mathcal{F}t$ depending on magnitude of correction

Outlook

- Uncertainty of $|V_{ud}|^2$ currently dominated by systematic theoretical uncertainties on δ_{NS}
- If δ_{NS} were reduced to being non-dominant Experiment the contribution of unitarity test would shift
to $\approx 3\sigma$
New calculations for δ correction (with abundance in $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1$ to ≈3σ
- New calculations for δ_{NS} correction (with abinitio methods) are being explored by TRIUMF's theory department
- emitters

Physical Review C 2020, 102.

- The charge radius of ^{26m}Al has been determined by Collinear Laser spectroscopy
- 4.5 standard deviations difference to extrapolated value used in isospin-symmetry-breaking corrections for $V_{\nu d}$ of CKM matrix
- Extrapolation points towards slight shift towards CKM unitarity
- For more information: PRL 131, 222502 (2023) (DOI:10.1103/PhysRevLett.131.222502)

Thank you for your attention!

P. PLATTNER¹, E. WOOD², L. AL AYOUBI³, O. BELIUSKINA³, M. L. BISSELL^{4,5}, K. BLAUM¹, P. CAMPBELL⁴. B. CHEAL² R. DE GROOTE⁶ C. DEVLIN² T. ERONEN³ L. FILIPPIN⁷ R. F. GARCÍA RUZÍZ⁸ Z. GE³ S. GELDHOF⁶, W. GINS³, M. GODEFROID⁷, H. HEYLEN⁵, M. HUKKANEN³, J. D. HOLT^{9,10}, P. IMGRAM¹¹, A. JARIES³, A. JOKINEN³, A. KANELLAKOPOULOS⁶, A. KANKAINEN³, S. KAUFMANN¹¹, K. KÖNIG¹¹, A. KOSZORÚS⁵, S. KUJANPÄÄ³, S. LECHNER⁵, S. MALBRUNOT-ETTENAUER⁵, R. MATHIESON², T. MIYAGI¹¹, I. MOORE³, P. MÜLLER¹¹, D. NESTERENKO³, R. NEUGART^{1,12}, G. NEYENS⁶, W. NÖRTERSHÄUSER¹¹, A. ORTIZ-CORTES³, H. PENTTILA³, I. POHJALAINEN³, A. RAGGIO³, M. REPONEN³, S. RINTA-ANTILA³, L. V. RODRÍGUEZ^{5,1}, J. ROMERO³, R. SÁNCHEZ¹³, F. SOMMER¹¹, M. STRYJCZYK³, V. VIRTANEN³, L. XIE⁴, Z. Y. $XU⁶$, X. F. YANG^{6,14}, AND D. T. YORDANOV¹⁵

 $¹$ Max Planck Institute for Nuclear Physics, Heidelberg, Germany</sup> ² University of Liverpool Department of Physics, Liverpool, United Kingdom ³ Department of Physics, University of Jungskyla, Jungskyla, Finland ⁴ Department of Physics Astronomy, University of Manchester, Manchester, United Kingdom ⁵ ISOLDE, CERN Experimental Physics Department, Switzerland ⁶ Institute for Nuclear and Radiation Physics, KU Leuven, Leuven, Belgium ⁷ Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing (SQUARES), Université libre de Bruxelles, Brussels, Belgium 8 Massachusetts Institute of Technology, Cambridge, MA, USA ⁹TRIUMF, Vancouver, Canada ¹⁰ Department of Physics, McGill University, Montréal, Canada ¹¹ Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt, Germany ¹² Institut für Kernchemie, Universität Mainz, Mainz, Germany. ¹³ GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany ¹⁴ School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China ⁵Institut de Physique Nucléaire, Université Paris-Sud, Université Paris-Saclay, Orsay, France

Thanks to COLLAPS, IGISOL, ISOLDE

KU LEUVEN

