Two-proton radioactivity status and perspectives

Nuclear Physics Division University of Warsaw

Dedication

Gottfried Münzenberg 1940 – 2024

Chart of nuclides

Beyond the proton drip-line

Competition between two decay modes

- → To study particle radioactivity fast techniques are necessary!
- To find where the drip-line actually is and to predict which decay will happen, precise mass values are needed!

Proton emission

Proton and two-proton separation energies at the proton drip-line

Goldansky

Vitaly losifovich Goldansky 1923 – 2001

Baz, Goldansky, Goldberg, Zeldovich, "Light and medium nuclei at the limits → of stability", Moscov 1972

⁴⁵Fe as a 2p candidate was confirmed later by more refined model calculations

ON NEUTRON-DEFICIENT ISOTOPES OF LIGHT NUCLEI AND THE PHENOMENA OF PROTON AND TWO-PROTON RADIOACTIVITY

V I GOLDANSKY

P N Lebedev Physical Institute, USSR Academy of Sciences, Moscow

Received 14 March 1960

Abstract: Application of isobaric invariance principles to light nuclei leads to a very simple relation between the Z-th proton binding energy E_p in nucleus 1 ($_ZM_N^A$) and the Z-th neutron binding energy E_n in the miror nucleus 2 ($_NM_Z^A$) With an accuracy of the order of a few per cent their difference $E_{n2} - E_{p1} = \varDelta E_{np}$ is independent of N for a given Z and is given by

$$\Delta E_{np} \approx E_n(ZM_Z^{2Z}) - E_p(ZM_Z^{2Z}) \approx 1.2 \frac{Z-1}{(2Z-1)^{\frac{1}{2}}},$$

which is more correct than the usual expression $12(Z-1)/(Z+N-1)^{\frac{1}{2}}$ By exploiting this fact one can predict the existence and properties of almost ninety new neutron-deficient isotopes of light nuclei (up to Z = 34) and establish the limits of stability of the isotopes with respect to decay with proton emission. Among the specific properties of neutron-deficient isotopes, proton and two-proton radioactivity effects which may occur are of special interest. Some nuclei are indicated in which these effects may be observed. The main features of a very curious phenomenon of two-proton radioactivity are discussed.

Projectile Fragmentation

- full identification of single ions in-flight
- fast transport (ms)
- implantation into thick detectors
- ready for secondary reactions
- cocktail beams

- low intensity of heavy projectiles
- large range straggling
- bad ion-optical properties of secondary beams
- products are lighter than projectiles

Example of identification

First observation of three new nuclides : ⁴²Cr, ⁴⁵Fe i ⁴⁹Ni FRS, GSI, 1996

Blank et al., PRL 77 (1996)

A long way to discovery

by Bordeaux-GANIL-GSI-Warsaw collaboration

- **GSI** 1992 : first experiment, determination of x-sections, ⁵⁰Ni
- GSI 1996 : first observation of ⁴⁵Fe (3 ions!), ⁴⁹Ni and ⁴²Cr
- GANIL 1999 : discovery of ⁴⁸Ni], 53 ions of ⁴⁵Fe
- GANIL VII 2000: next attempt of ⁴⁵Fe spectroscopy: 22 ions of ⁴⁵Fe
- GSI VII 2001: new approach to ⁴⁵Fe studies: focus on μs lifetimes

2p radioactivity

> Implantation into Si – good measurement of energy and time, but **protons not resolved**!

M. Pfützner, DPG Spring Meeting, Cologne, 13 March 2025; Seminarium FJA, 15.05. 2025

$T_{1/2}$ predictions for ⁴⁵Fe

3-body : L.V. Grigorenko and M.V. Zhukov, PRC68 (2003)

R-matrix :: B.A. Brown, F.C. Barker, Proc. PROCON'03

No other decay scenario could explain the measured decay energy and lifetime

Further cases

> Two more cases of 2p emission discovered by implantation into Si detetctors

→ Need to record two protons separately!

What is the mechanism?

Predicted angle between two proton momenta (L. Grigorenko)

The Warsaw OTPC

Time projection chamber with optical readout (OTPC) (W. Dominik)

Combination of the CCD image with the PMT waveform allows full reconstruction of two tracks in 3-D

Event data

CCD image

tracks of the ion and emitted particle(s)

or only emitted particle(s)

PMT signal sampled

time sequence of events

p-p momentum correlations for ⁴⁵Fe

NSCL: ⁵⁸Ni @ 161 MeV/u + Ni \rightarrow ⁴⁵Fe

Miernik et al., PRL 99 (2007)

 Proton-proton correlations are complex and indicate a genuine 3-body phenomenon

Grigorenko *et al*., Phys. Lett. B 667 (2009)

coslar

1.0 1.0

- Good agreement with the 3-body model of Grigorenko et al.
- The correlation picture depends on the initial wave function

0.0

0.2

0.4

2p radioactivity of ⁴⁸Ni

Pomorski et al., PRC 83 (2011)

Physical Review C 50th Anniversary Milestones

First observation of two-proton radioactivity in ⁴⁸Ni

A rare form of radioactivity, in which a proton-laden nucleus decays toward stability via the simultaneous emission of two protons, was observed for ⁴⁸Ni. Using an optical time-projection chamber, the two-proton emission of four ⁴⁸Ni nuclei produced at the National Superconducting Cyclotron Laboratory was captured for the first time on CCD camera, marking a new era of optical detection of sub-atomic charged-particle processes in nuclear physics.

First observation of two-proton radioactivity in ⁴⁸Ni

M. Pomorski, M. Pfützner, W. Dominik, R. Grzywacz, T. Baumann, J. S. Berryman, H. Czyrkowski, R. Dąbrowski, T. Ginter, J. Johnson, G. Kamiński, A. Kuźniak, N. Larson, S. N. Liddick, M. Madurga, C. Mazzocchi, S. Mianowski, K. Miernik, D. Miller, S. Paulauskas, J. Pereira, K. P. Rykaczewski, A. Stolz, and S. Suchyta

2p decay of ⁵⁴Zn

Physics of single p emission

The first case of proton radioactivity – GSI Darmstadt 1982

Hofmann et al., Z. Phys. A 305 (1982)

Theory of 2p emission

Next step: FRIB

Advanced Rare Isotope Separator (ARIS) @ FRIB, MSU

Portillo et al., NIM B 540 (2023)

ARIS at MSU started in 2021

lons up to 200 MeV/u for U accelerated by linac

Currently running at 16 kW Designed to 400 kW !

FRIB: ⁵⁸Ni @ 250 MeV/u + C→ ⁴⁸Ni, ⁵⁴Zn, ⁴⁵Fe

Experiment conducted in January/February 2025

On-line ID plot

We have seen about 6 ions of ⁴⁸Ni/h \rightarrow about 2 2p decays/h observed!

The current status of 2p emission

Global 2p predictions (I)

¹⁰³Te

 Predictions of the direct model based on global mass calculations by Erler et al., Nature 486 (2012)

Global 2p predictions (II)

Summary

Two-proton radioactivity:

- Predicted 65 years ago
- ✤ Observed in ⁴⁵Fe 23 years ago
- Exhibit essentially 3-body character
- Comprehensive theoretical description not yet available
- Expected in all even-Z elements between Fe and Te
- Data of large statistics recently obtained at FRIB for ⁴⁵Fe, ⁴⁸Ni and ⁵⁴Zn
- ✤ Many more to come soon at new facilities (FRIB, FAIR, ...)
- Optical TPC is a good tool to study rare particle emission

Thank you!

Most of the work was done by:

- Chiara Mazzocchi
- Zenon Janas
- Wojciech Dominik
- Henryk Czyrkowski
- PhD students:
 - Krzysztof Miernik
 - Marcin Pomorski
 - Sławomir Mianowski
 - Aleksandra Lis/Ciemny
 - Adam Kubiela
 - Natalia Sokołowska
 - Aleksandra Skruch

