Collectivity above ⁷⁸Ni and ¹³²Sn cores

Kamila Sieja

Institut Pluridisciplinaire Hubert Curien, Strasbourg

Warszawa, 19.01.2017

- Generalities about modern shell model approach
- Collectivity above ⁷⁸Ni core
- Collectivity above ¹³²Sn core
- Radiative strength from shell model

Nuclear many-body problem

The number of nucleons in nuclei is too large for an exact solution of A-body Schrödinger equation. Still, it is much too small for statistical methods.

 Nuclear Shell Model (SM), known as well as Configuration Interaction (CI)

 Density Functional Theory (DFT):

$$E = \frac{\langle \Psi | H | \Psi \rangle}{\langle \Psi | \Psi \rangle} \Longleftrightarrow \mathscr{E}_{EDF}[\rho]$$

$$\rho_{ij} = \langle \phi | a_j^{\dagger} a_i^{\dagger} | \phi \rangle \longleftrightarrow | \phi \rangle = \prod a_i^{\dagger} | - \rangle.$$

 Macroscopic-microscopic models

Model spaces

 Classical 0hω model spaces (e.g. sd-shell, pf-shell) are successfull for the description of a low lying states of nuclei, their transition rates and weak-decays.

Neutron rich nuclei require different active proton and neutron shells (e.g. *sd*-shell for protons, *pf*-shell for neutrons).

Deformed nuclei and deformed bands in spherical nuclei are due to many-particle many-hole excitations across the gaps. At least 2*h*ω spaces are necessary e.g. *sd-pf* for both neutrons and protons).

In simple shell-model nuclei, certain observables require going beyond 0hω model space, e.g. parity changing transitions.

Shell Model: giant computations

Problem dimension in the m-scheme:

 $D \sim \begin{pmatrix} d_{\pi} \\ p \end{pmatrix} \cdot \begin{pmatrix} d_{\nu} \\ n \end{pmatrix}$

In the *pf*-shell $(1f_{7/2}, 2p_{3/2}, 1f_{5/2}, 2p_{1/2})$: ⁴⁸Cr 1,963,461 ⁵⁶Ni 1,087,455,228

- Current diagonalization limit in m-scheme 10¹⁰
- The largest SM diagonalization up to date has been achieved by the Strasbourg group (using very modest computing resources):

Phys. Rev. C82 (2010) 054301, ibidem 064304

- <u>m scheme</u> CODE ANTOINE
- <u>coupled scheme</u>
 CODE NATHAN

E. Caurier et al., Rev. Mod. Phys. 77 (2005) 427; ANTOINE website

Largest SM matrices we treat $\sim 10^{14}$ contain non-zero matrix elements. They can not be stored on a hard drive. It would take 100.000 DVDs to store one matrix!

Shell gaps in nuclei & realistic 2-body interactions

M. Hjorth-Jensen et al., Phys. Rep. 42, 37 (1994) & M. Hjorth-Jensen website

Realistic 2N potentials produce strong h.o. closures but no spin-orbit ones...

Shell Model & 3N forces

- No-core shell model calculations with 3N forces possible for light systems (A~12).
- In core-shell model for heavier nuclei, 3N contribution taken into account empirically.
- A. Cortes and A.P. Zuker, "Self-consistency and many-body monopole forces in shell model calculations" Phys. Lett. B84 (1979) 25

Excitation energies in light nuclei in NCSM with chiral EFT interactions. *P. Navratil et al., Phys. Rev. Lett. 99 (2007) 042501.*

SM with empirical interactions: regions of activity

Nuclei above ⁷⁸Ni

Knowing s.p. structure of ⁷⁹Ni will be useful to validate the model assumptions **Interaction:** $\pi\pi$ fit of Lisetskiy & Brown, $\nu\nu$ GCN5082, $\pi\nu$ monopole corrected G-matrix. Proven successful and predictive in a large number of applications:

 Structure, mixed symmetry states in Zr isotopes, shell evolution between ⁹¹Zr and ¹⁰¹Sn

K. Sieja et al., Phys. Rev. C79 (2009) 064310

 Isomers and medium-spin structures of ⁹⁵Y, ^{91–95}Rb, ^{92–96}Sr

PRC85 (2012) 014329, PRC79 (2009) 024319, PRC82 (2010) 024302, PRC79 (2009) 044304

- Collectivity and j-1 anomaly of ⁸⁷Se PRC88 (2013) 034302
- β-decays of Ga nuclei and structure of N = 52,54 isotones
 PRC88 (2013) 047301, PRC88 (2013) 044330, PRC88 (2013) 044314
- Magnetic moments of ⁸⁶Kr, ⁸⁸Sr, PRC 80 (2014) 064305
- Collectivity of N = 52,54 nuclei PRC88 (2013) 034327

Nuclei above ⁷⁸Ni: new developments

- New estimate of proton f_{5/2}-p_{3/2} splitting in the core from studies of neutron-rich copper isotopes
- New fit of proton-proton interaction for N=50 isotones, using some new data e.g. ⁸³As from EXILL P Becruk et al. Phys. Bev. C.91, 047302

P. Baczyk et al., Phys. Rev. C 91, 047302 (2015)

Ni78-II interaction:

W. Urban et al., Phys. Rev. C 94, 044328 (2016)
M. Czerwinski et al., Phys. Rev. C 93, 034318 (2016)
J. Litzinger et al., Phys. Rev. C 92, 064322 (2015)
T. Materna et al., Phys. Rev. C 94, 034305 (2015)
M. Czerwinski et al., Phys. Rev. C 94, 014328 (2015)

Nuclear deformation

The nuclear shape can be characterized by the Bohr parameters (β, γ) which describe the quadrupole shape of the nuclear surface. The most used model is the rigid axial rotor of Bohr Mottelson and its generalization to a triaxial shape by Davidov and Filipov.

$$R_{\lambda} = R\left(1 + \beta \sqrt{\frac{5}{4\pi}} \cos(\gamma - \frac{2\pi}{3}\lambda)\right)$$
$$\lambda = 1, 2, 3$$
$$Q_{0} = \frac{3ZR^{2}\beta}{\sqrt{5\pi}}$$
$$R = R_{0}A^{1/3}$$

Non-collective prolate

Collectivity and triaxiality

Fig. 1. Comparison of triaxial (or Davydov [6]) rigid γ rotor and γ -soft models. The Davydov results for $\gamma = 30^{\circ}$ are shown explicitly in the middle for comparison with the γ -unstable, or Wilets-Jean [7], model. (The γ -band levels are shown as thicker lines.)

S(4,3,2) > 0for a rigid triaxial rotor (+1.67)

S(4,3,2) < 0 for γ -independent potential (-2)

N.V. Zamfir and R. Casten, Phys. Lett. B260, 265 (1991)

stagerring of the
$$\gamma$$
 band:
 $S(J, J-1, J-2) = \frac{[E(J) - E(J-1)] - [E(J-1) - E(J-2)]}{E(2^+_1)}$

Quadrupole shape invariants

K. Kumar, Phys. Rev. Lett. 28 (1972) 249

$$Q_{int}(s) = \sqrt{rac{16\pi}{5} p_s^{(2)}} \quad \cos 3\gamma(s) = -\sqrt{7/2} \ p_s^{(3)} \left(p_s^{(2)}
ight)^{-3/2}$$

$$p_{s}^{(2)} = (2I_{s}+1)^{-1}\sum_{r}M_{sr}^{2} = \frac{5(I_{s}+1)(2I_{s}+3)}{16\pi I_{s}(2I_{s}-1)}Q_{spec}^{2}(s) + \sum_{r\neq s}B(E2;s\rightarrow r),$$

 M_{sr} = reduced E2 matrix elements

$$p_{s}^{(3)} = -\sqrt{5}(2I_{s}+1)^{-1}(-1)^{2I_{s}}\sum_{rt} \left\{ \begin{array}{ccc} 2 & 2 & 2 \\ I_{s} & I_{r} & I_{t} \end{array} \right\} M_{sr}M_{rt}M_{ts},$$

For the rigid triaxial rotor the parameters p_2 and p_3 are directly related to the (β, γ) deformation parameters and nuclear radius R_0 .

$$p_{2} = e^{2}Q_{0}^{2}\beta^{2}$$

$$p_{3} = e^{3}Q_{0}^{3}\beta^{3}\cos(3\gamma) = p_{2}^{3/2}\cos(3\gamma)$$

where $Q_0 = 3ZR_0^2/(4\pi)$ p_2 and p_3 can be obtained from multipole sums of *E*2 matrix elements (Cline Flaum sum rule)

Collectivity and triaxiality in Ge isotopes

Experimental hint for collectivity in ⁸⁴Ge M. Lebois et al., Phys. Rev. C 80, 044308 (2009)

 Experimental signs of rigid collectivity in the g.s. claimed in ⁷⁶Ge: S(4) = 0.09

Y. Toh et al., Phys. Rev. C87, 041304R (2013)

It is known from SM and experimental studies that proton p_{3/2} and f_{5/2} orbits remain close in the ⁷⁸Ni region. SM extrapolation gives degenerate neutron d_{5/2} and s_{1/2} orbits. These are perfect conditions for quadrupole collectivity to develop.

Kamila Sieja (IPHC)

Collectivity and triaxiality above ⁷⁸Ni

Simple perspective: predictions of the pseudo-SU(3) scheme

$$q_0(n,\chi,k) = (2n - 3\chi)b^2$$

$$\chi = 0, ..., n \quad k = \pm (\frac{1}{2}, ..., \frac{1}{2} + \chi)$$

Predictions of pseudo-SU(3) model for N=52,54:

Nucleus	Q_0	$B(E2;2^+ ightarrow0^+)$
⁸² Zn	114	258
⁸⁴ Ge	131	342
⁸⁶ Se	148	436
⁸⁸ Kr	117	272
⁸⁴ Zn	135	362
⁸⁶ Ge	151	454
⁸⁸ Se	168	561
⁹⁰ Kr	137	373

maximal prolate deformation in ⁸⁸Se

possible triaxiality in ⁸⁶Ge (degeneracy of K = 0 and K = 2 configurations)

A. P. Zuker et al., Nilsson-SU3 selfconsistency: Quadrupole dom inance in heavy N=Z nuclei. http://arxiv.org/abs/1404.0224

Predictions of the pseudo-SU(3) model vs SM diagonalization

■ pseudo-SU(3) is a good approximation for the proton mid-shell

- maximal prolate deformation in ⁸⁸Se
- possible triaxiality in ⁸⁶Ge

Intrinsic shape parameters of shell model states

С

(Yrast)	State	Q_0	β	γ (deg.)
⁸⁶ Ge	0_{qs}^+	165	0.238	19
	2_{1}^{+}	161	0.232	8
	4 ⁺	152	0.218	12
	6 ⁺	118	0.172	10
⁸⁸ Se	0_{gs}^+	174	0.250	9
	2 ⁺ 1	169	0.243	12
	4 ⁺	159	0.229	15
	6 ⁺	118	0.173	14
(Excited)	State	Q_0	β	γ (deg.)
⁸⁶ Ge	2^{+}_{2}	152	0.219	28
	31∓	148	0.213	32
	4^{+}_{2}	116	0.169	41
	5^{\mp}_1	105	0.154	33
⁸⁸ Se	22	152	0.219	35
	3 [∓]	143	0.207	36
	42	114	0.166	40
	-7	100	0 1 10	00

$$Q_{int}(s) = \sqrt{\frac{16\pi}{5}} p_s^{(2)}$$

$$\cos 3\gamma(s) = -\sqrt{7/2} p_s^{(3)} \left(p_s^{(2)}\right)^{-3/2}$$

$$\begin{split} \rho_{s}^{(2)} &= (2l_{s}+1)^{-1}\sum_{r}M_{sr}^{2} \\ &= \frac{5(l_{s}+1)(2l_{s}+3)}{16\pi l_{s}(2l_{s}-1)}Q_{spec}^{2}(s) \\ &+ \sum_{r\neq s}B(E2;s\rightarrow r), \end{split}$$

 M_{sr} = reduced E2 matrix elements

$$\begin{aligned} \rho_s^{(3)} &= -\sqrt{5}(2I_s+1)^{-1}(-1)^{2I_s} \\ \sum_{rt} \left\{ \begin{array}{cc} 2 & 2 & 2 \\ I_s & I_r & I_t \end{array} \right\} M_{sr} M_{rt} M_{ts}, \end{aligned}$$

K. Kumar, Phys. Rev. Lett. 28 (1972) 249

GCM-Gogny

Agreement of excitation energies for the 1st excited band within keV!

-matrices dimension 10⁶ -feasible on a laptop -typical time of calculations: 5min to 4h on one processor -symmetry conserved (particle number and angular momentum) -cluster of 140 CPUs -typical time of calculations: 1 month

K. Sieja, T.R. Rodriguez, K. Kolos and D. Verney, Phys. Rev. C88 (2013) 034327

GCM-Gogny

Agreement of excitation energies for the 1st excited band within keV!

-matrices dimension 10⁶ -feasible on a laptop -typical time of calculations: 5min to 4h on one processor -symmetry conserved (particle number and angular momentum) -cluster of 140 CPUs -typical time of calculations: 1 month

K. Sieja, T.R. Rodriguez, K. Kolos and D. Verney, Phys. Rev. C88 (2013) 034327

Some experimental results at N=52

 Second excited state in ⁸⁴Ge is 2⁺₂, in agreement with predictions of 5DCH-D1S Gogny model, which gives a γ-soft ground state. SM supports the Gogny predictions with 2⁺₂ being a head of a quasi-γ band.

K. Kolos et al., Phys. Rev. C88 (2013) 047301 A. Korgul et al., Phys. Rev. C88 (2013) 044330

- ⁸⁶Se appears little deformed (β ~ 0.1) but γ-soft from analysis of n-body quadrupole moments.
- Recent B(E2) from lifetimes (Cologne) in ⁸⁶Se in good agreement with the SM ones! J. Litzinger et al., Phys. Rev. C92 (2015) 064322

Outlook: Collectivity above ¹³²Sn core pseudo-SU(3) predictions

In analogy to what we have seen above the ^{78}Ni , collectivity should also thrive for the open-shell nuclei above the ^{132}Sn core (N=54 \rightarrow N=86)

Some K-mixing should be possible in realistic calculations leading to triaxially deformed shapes

Collectivity above ¹³²Sn core

- Diagonalization in proton gds -neutron hfp model space, interaction based on N3LO, empirically corrected
- SM results in good agreement with experiment in ¹³⁸Te and ¹⁴⁰Xe

Collectivity above the ¹³²Sn core

PHYSICAL REVIEW C 93, 034326 (2016)

First evidence of γ collectivity close to the doubly magic core ¹³²Sn

W. Urban,¹ K. Sieja,^{2,3} T. Rząca-Urban,¹ M. Czerwiński,¹ H. Naïdja,^{2,3,4,5} F. Nowacki,^{2,3} A. G. Smith,⁶ and I. Ahmad⁷

- good agreement between experimental and SM spectra
- (β, γ) from SM E2 are 0.15, 16° in the g.s. of ¹⁴⁰Xe

Astrophysics aspects

Nuclear input for astrophysics models:

-β strength function (GT, FF) ← masses, wave-functions *PRC87 (2013) 025803* -(n, γ) rates \leftarrow level densities, γ strength functions *EPJA* (2012) -fission properties

Neutron capture cross sections

$$\sigma_{(n,\gamma)}^{\mu\nu}(E_i,n) = \frac{\pi\hbar^2}{2M_{i,n}E_{i,n}} \frac{1}{(2J_i^{\mu}+1)(2J_n+1)} \sum_{J,\pi} (2J+1) \frac{T_n^{\mu}T_{\gamma}^{\nu}}{T_{tot}},$$

where:

$$\begin{split} E_{i,n}, M_{i,n}\text{-} \text{ center-of-mass energy, reduced mass of the system} \\ J_n &= 1/2\text{-neutron spin} \\ \text{transmission coefficients:} \\ T_n^{\mu} &= T_n(E,J,\pi; E_i^{\mu}, J_i^{\mu}, \pi_i^{\mu}) \ T_{\gamma}^{\nu} = T_{\gamma}(E,J,\pi; E_m^{\nu}, J_m^{\nu}, \pi_m^{\nu}) \end{split}$$

For a given multipolarity

$$T_{XL}(E, J, \pi, E^{\nu}, J^{\nu}, \pi^{\nu}) = 2^{2L+1}_{\gamma} f_{XL}(E, E_{\gamma})$$

Key ingredients in Hauser-Feschbach calculations:

- description of gamma emission spectra of a compound nucleus
- Brink-Axel hypothesis

Overview & Motivation

Low energy enhancement of the γ -strength function

Data from Oslo group

- Microscopic strength functions are different from global parametrizations
- Low energy enhancement of γ-strength observed in different regions of nuclei
- It can influence the (n, γ) rates of the r-process by a factor of 10!

A.C. Larsen and S. Goriely, Phys. Rev. C82 (2010) 014318

 Evidence for the dipole nature of low energy enhancement in ⁵⁶Fe

A. C. Larsen et al., Phys. Rev. Lett. 111 (2013) 242504

Gamma energy (MeV)

Overview & Motivation

- Thermal continuum QRPA calculations
- Enhancement due to transitions between thermally unblocked s.p. states and the continuum
- Note the difference between T = 0 (ground state) and T > 0 (excited state)
 E1 strength distribution

- R. Schwengner et al., PRL111 (2013) 232504
- Shell model transitions between a large amount of states
- Enhancement due to the M1 transitions between states in the region near the quasicontinuum
- A general mechanism to be found throughout the nuclear chart

SM calculations in sd - pf - gds valence space

- Full *fp*-calculations for positive parity states
- Full 1 ħω calculations for negative parity states- all 1p-1h excitations from sd and to gds shells
- *H_{SM}* =

 $\sum_{i} \varepsilon_{i} c_{i}^{\dagger} c_{i} + \sum_{i,j,k,l} V_{ijkl} c_{j}^{\dagger} c_{j}^{\dagger} c_{l} c_{k} + t a_{c.m.} H_{c.m.}$

- 60 states per spin and parity $S_{M1/E1} = \langle B(M1/E1) \rangle \rho(E_i)$ (60×5000 iterations...)
- or Lanczos SF method with 500 iterations for upward S_{M1/E1}

Effective Hamiltonian

- Interaction from V_{lowk} based on the CD-Bonn potential
- Monopole corrections to fix the s.p. and s.h. energies (spectra of ³⁹K, ⁴¹Ca) and position of opposite parity states (⁴¹Ca, ⁴²Ca, ⁷⁸Sr)
- Good reproduction of low lying levels in considered nuclei and accurate position of the first 1p-1h states
- Quenching of 0.75 on magnetic spin operator
- Accurate reproduction of known magnetic moments of f_{7/2}-shell nuclei

Level densities

Good reproduction though not enough natural parity states in Sc nuclei - missing contribution from 2p-2h

M1 calculations: natural parity (pf-shell states)

Correlation between the magnitude of the enhancement and the complexity of the nucleus (wave functions)

M1 calculations: natural parity (pf-shell states)

 ${\tt sec} Simpler \ wave \ functions \rightarrow larger \\ upbend$

■ Dependence of the upbend on the nuclear shape

E1 calculations

⁴⁴Ti

Kamila Sieja (IPHC)

E1 calculations: low lying strength

- SM probably the most accurate tool for the low lying strength
- Can one build a reliable global RSF model based on SM results?
- 3-years In2p3 project (CEA-DAM, ULB, Oslo, IThemba LABS, ...)

S. Goriely, private comm. & S. Goriely et al., Nucl. Phys. A739, 331 (2004)

- SM with empirical interactions is a powerful tool in the studies of spectroscopy and deformation properties of nuclei.
- Triaxial shapes are predicted to exist above ⁷⁸Ni and ¹³²Sn cores in N = 54 and N = 86 isotones
- Available experimental data support theoretical predictions
- New applications of shell model to statistical properties of nuclei are in progres