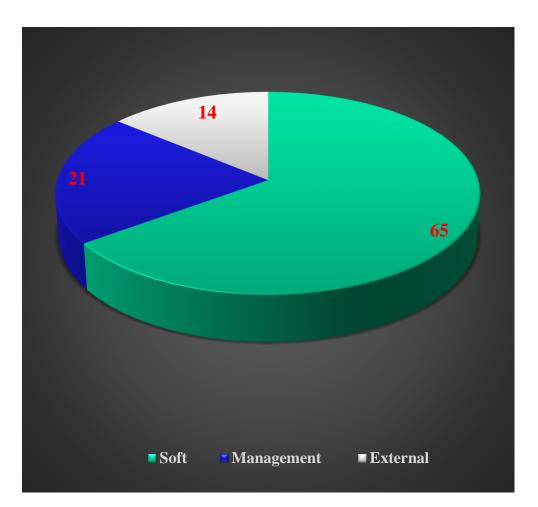
Oct. 2024 Ki Sig Kang, Ph.D, P.E. Professor for Special <u>Affairs</u>, Department of NPP Engineering. KINGS Kisigkang4@outlook.com

KEY SUCCESS FACTORS FOR NPP CONSTRUCTION MANAGEMENT

KINGS KEPCO INTERNATIONAL NUCLEAR GRADUATE SCHOOL

General Information


Large scale projects have a calamitous history of cost overrun

Project	Cost Overrun (%)	Project	Cost Overrun (%)
Suez Canal, Egypt	1900	Sydney Opera House, Australia	1400
Scottish Parliament Building, Scotland	1600	Montreal Summer Olympic, Canada	1300
Concorde Supersonic Aeroplane, UK, France	1100	Troy and Greenfield Railroad, USA	900
AIR FRANCE		Canadian Firearms registry, Canada,	590

Failure History

- 65% of project failures were due to softer aspects such as people, organization, governance.
- A further 21% were caused by management process and contracting and governance.
- 14% of the failure due to external factors such as government intervention and environment – related mandates

Three guiding questions

- Are cost overruns and construction delays inevitable features of Nuclear New Build (NNB) ? ?
- Is there single model for Project management or Business model in NNB ?
- What are the conditions for more efficient global nuclear supply chain for NNB ?

Focused on nuclear new build

What's Demanded

Planned Construction Time

Higher Quality

Within Budget

Localization and National Involvement

Need to Achieve

Front-loaded Detailed **Construction Engineering**

Perfect Construction Management

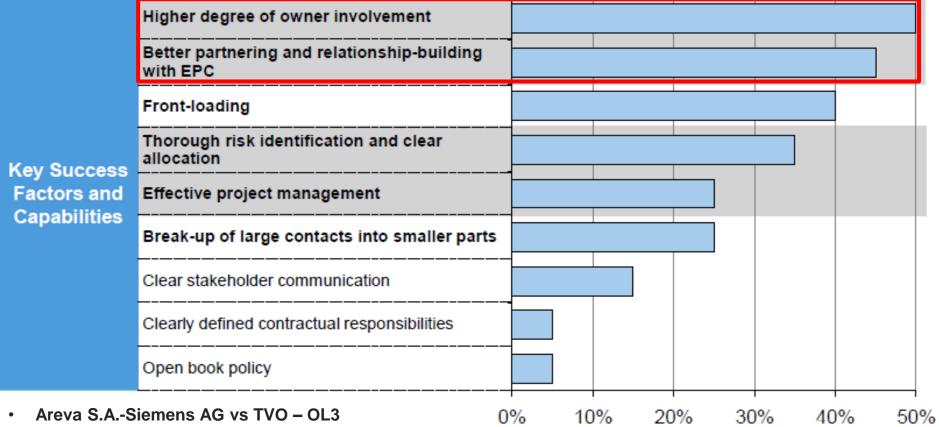
Data Sharing & Technical **Transfer Environment**

INGS NUCLEAR GRADUATE SCHOOL Full Application of Construction IT

Categories	1970-1995 [month]	1996-Now [month]
Median	80	83 ~ more than 200
Minimum	41	47

- Construction Schedule for 1350 MWe unit
 ➢ From F/C to C/O : 62 → 49 Months
- Construction Schedule at 1000 MWe unit
 ➢ From F/C to C/O : 64 → 47 Months

C/O: Commercial Operation F/C : First concrete pouring



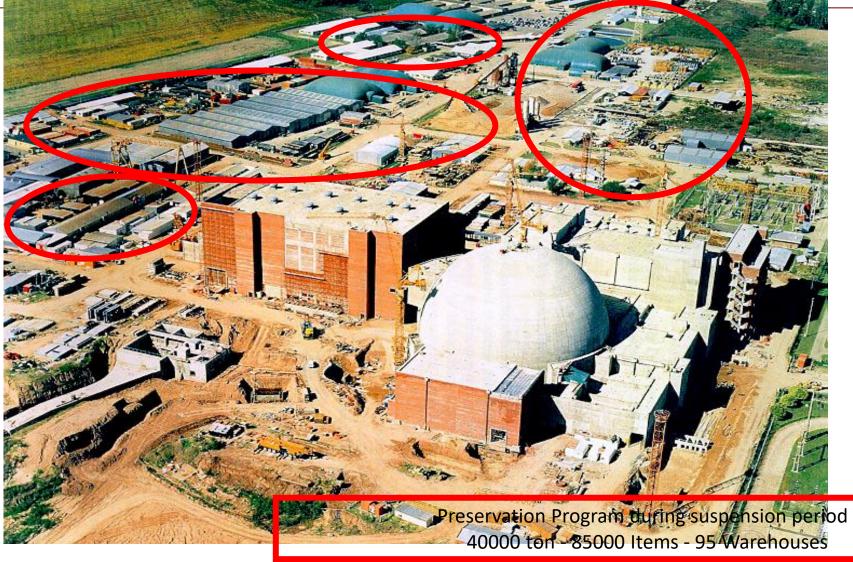
Owner Establishment

Owner Requirements for Success

Success Factor / Capability

% Owners Identifying Success Factor/Capability*

• RAOS Project vs Hanhikivi Nuclear Power Plant



Previous Construction Experiences

After first Criticality (Atuch #2) in Argentina

Site Situation at the time of restarting the Project (2006) in Argentina

Angra 3 Npp in Brazil

- Began in 1984 but was suspended after two years.
- First concrete was poured in 2010. But stopped in 2015
- In 2022, Eletronuclear ordered construction to restart
- In April 2023 the city government ordered work to stop

Angra 3 Npp in Brazil

Preservation of Stored Components

KINGS KEPCO INTERNATIONAL NUCLEAR GRADUATE SCHOOL

In 2003 Photos

Bushehr 1 NPP

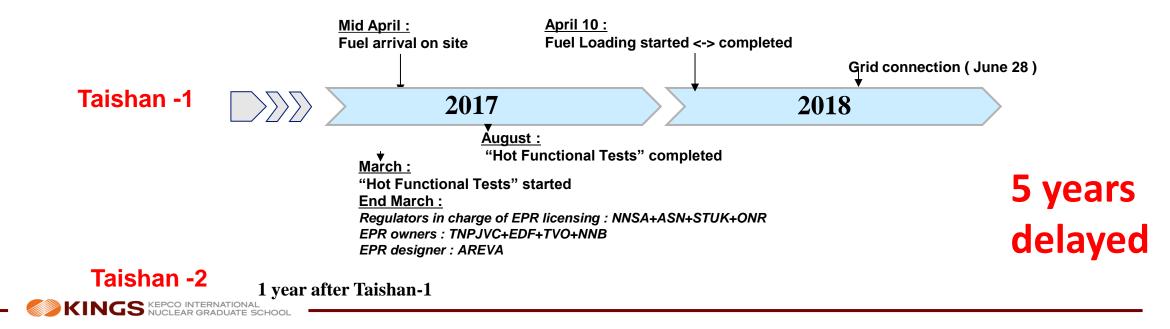
	Unit Power VVER-446	Design Net Capacity	Gross Capacity	Thermal Capacity
	915 MW _e	915 MW _e	1000 MW _e	3000 MW _t
/	Construction Start Dat e	First Criticality Date	Construction Suspension Date	Construction Restart Date
ſ	01 May, 1975	08 May, 2011	01 Jan, 1978	01 Jan, 1996
	First Grid Connection	Commercial Operation	n Date	17y 8m after resuming Construction
	03 Sep, 2011	23 Sep		
4		All and a second s		

OL3 construction site in February 2012

December 2012, Areva estimated full cost would be about $\in 8.5$ billion, well over previous estimate of $\in 6.4$ billion, with commercial operation no earlier than 2018.

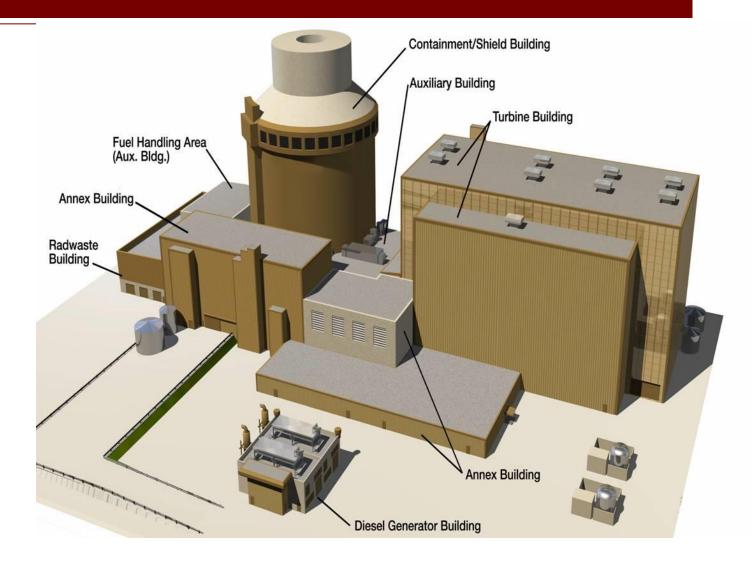
- Cost overruns were considerable, rising from the original estimate of €3.9 billion, to a final cost of €11 billion, split between TVO and Areva.

KINGS KEPCO INTERNATIONAL NUCLEAR GRADUATE SCHOOL

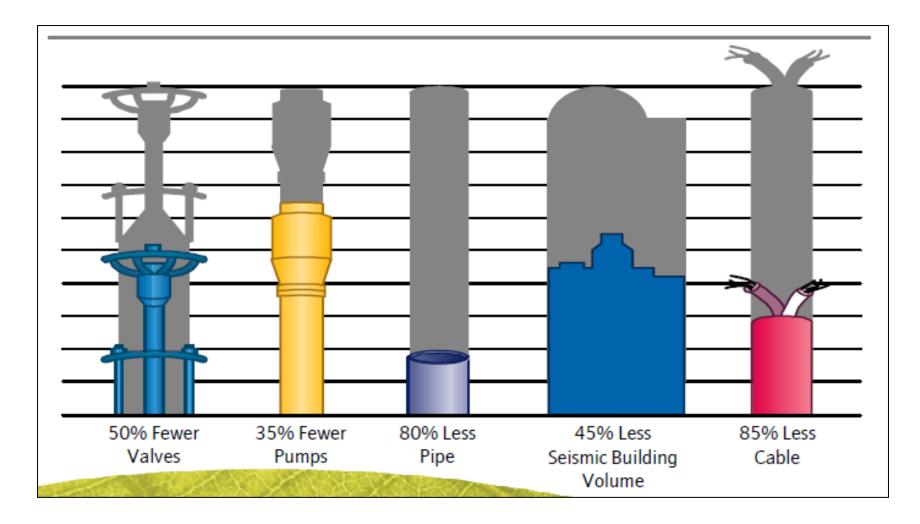

First 2022 : Start Demo-Run

EPR construction status

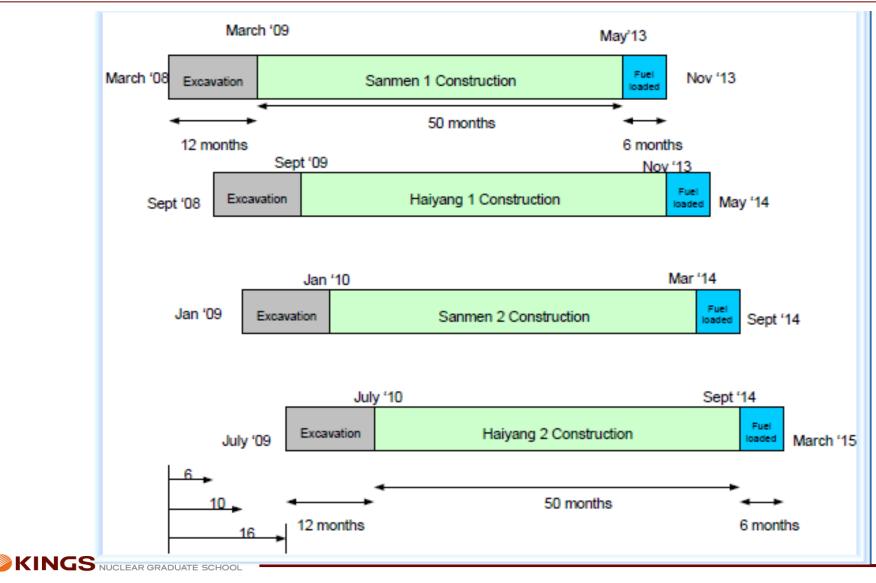
EPR Taishan 1&2 (China)


- 2 × 1750 MW
- Construction began: 2009
- Planned to go online in 2013
- Commission date: June 2018
- Construction cost: 50.2 billion yuan (US\$7.5 billion)

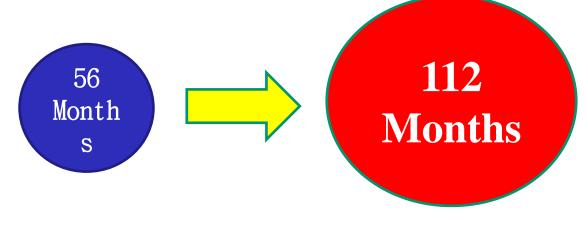
Westinghouse AP1000


A compact station

- 3415 MWt.
- 1117 MWe
- 2-loops, 2 SGs



Reduced Components


Construction Duration – 56 Months (China construction- Sammen/ Haiyang)

AP-1000, SANMAN CHINA

- Nov. 2013 Commercial Operation Date in Contract
- Aug.14 2018 COD

Westinghouse – EPC Contract

Challenges - Design Management

AP-1000, 4 units in USA

- Construction began on the first of four AP1000 reactors in the USA
 - Summer unit 2 and Vogtle unit 3 in Georgia March 2013,
 - Summer 3 unit and Vogtle 4 unit November 2013
- Fixed prices
- **Construction 56 Months**

USA V.C Summer unit 2, 3 AP 1000

Summer unit 2, pictured on 9 June after placement of the unit's third and final containment ring (image: SCE&G) March 2013- Unit 2 Nov. 2013 – Unit 3 Start Construction

The end of July, 2017, Spent 9 B USD

Westinghouse – EPC Contract

USA V.C Summer unit 2, 3 AP 1000

The unfinished Unit 2 nuclear reactor pictured Sept. 12, 2024, at VC Summer NPP construction site

Nuclear reactor assemblies pictured Sept. 12, 2024

Reactor vessel pictured Sept. 12, 2024

Vogtle unit 3 and 4 in Georgia

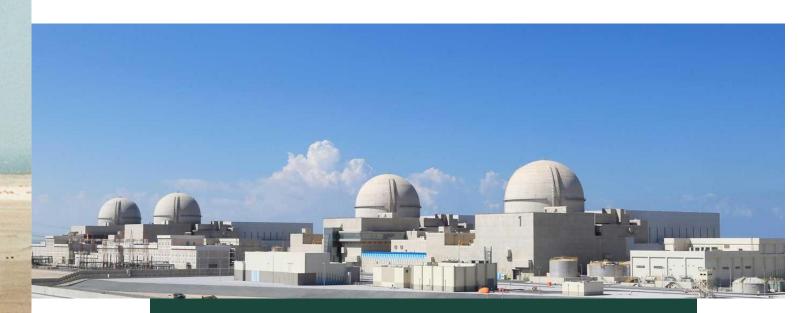
Vogtle unit 3 in Georgia – approval of Fuel Loading : Aug. 04. 2022

Milestone	Unit 3	Unit 4
First Nuclear Concrete	March 2013	November 2013
First Sync to Grid	April 2023	October 2023 (F)

Cost of \$35 billion — More than double the initial \$14 billion estimate, seven years late Ref : https://scdailygazette.com/2024/10/15/7-years-after-sc-nuclear-debacle-advisory-group-suggests-potential-restart-of-failed-project/

Temelin NPP construction in Czech Republic

PWR (VVER-320)	(3210 MWt/ 1023 Mwe)
Construction Start Date	First Criticality Date
01 Feb, 1987	11 Oct, 2000
First Grid Connection	Commercial Operation Date
21 Dec, 2000	10 Jun, 2002


Temelin commissioning challenges

U1 individual Power Ascension Test = 525 days/ 1.43 year

Power	From – To	Days	Interruption	Note
level				
5%	30 Oct – 10 Nov 2000	12	-	-
12%	14 Nov – 9 Dec 2000	26	-	-
30%	15 Dec 2000 – 8 Mar 2001	84	approx. 70 days	The stage was repeatedly in terruptet with T/G
55%	19 Mar – 27 Sep 2001	193	3 Apr –16 Apr [14 days] and 26 Apr – 12 Aug [109 days]	Vibration of the turbine and the pipeline between control valves and HP cylinder of T/G
75%	19 Oct - 18 Dec 2001	61	1 Nov – 26 Nov [26 days]	RCP autonomous circuit leak
90%	21 Dec 2001 – 3 Jan 2002	14	-	-
100%	10 Jan – 24 May 2002	135	24 Feb – 22 Apr [58 days]	Non-functionality of fast acting valves Argus

The period between termination of the previous stage and the initiation of the subsequent stage is the period of waiting for the approval of State office for nuclear safety. = 1.7 years

2009, 1st Export of APR1400 to UAE

4 units construction completion in 2024

- **KINGS** KEPCO INTERNATIONAL NUCLEAR GRADUATE SCHOOL

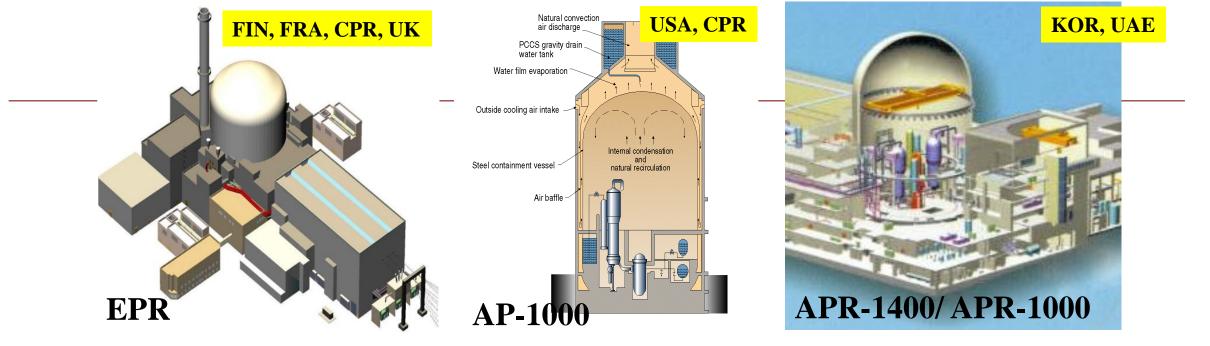
Barakah Unit 1, 2, 3, 4 (UAE)

- **Design :** APR1400 x 4 units
- **Expected Cost:** 541 billion CZK
- Construction Duration
- Unit 1: 2012 2021 (8.7 yrs)
- Unit 2: 2013 2022 (8.5 yrs)
- Unit 3: 2014 2023 (8.4 yrs)
- Unit 4: 2015 target to 2024
- Project Schedule

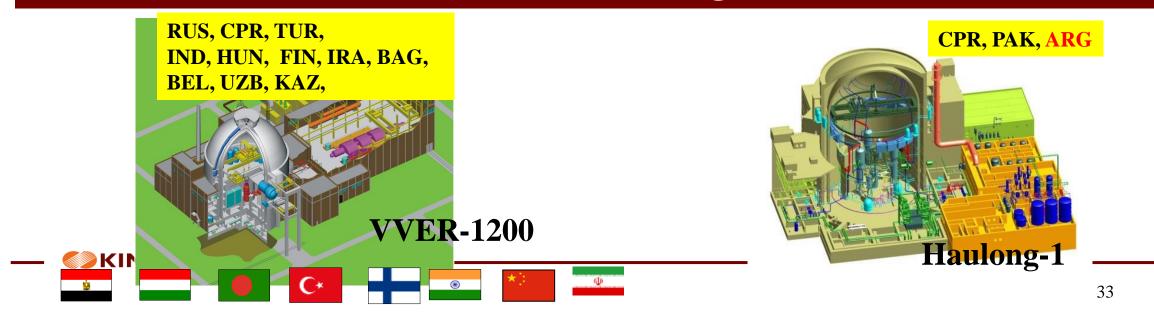
Senior Reactor Operator

- Reactor Power Plant Theory
- Plant Systems Training
- Formal Simulator Training
- Structured Reviews
- Simulator Exercises
- Final Examination

KINGS NUCLEAR GRADUATE SCHOOL



Major Milestone	Unit 1	Unit 2	Unit 3	Unit 4
Contract signed	2009			
Site Excavation	2011 - 2015			
1 st Concrete (after Construction License)	2012	2013	2014	2015
Reactor Installation	2014	2015	2016	2017
Fuel Loading (after Operation License)	2020	2021	2022	(2023)
Project Completion	2021	2022	2023	(2024)



Advanced Technology

Advanced Water Cooled Reactor Technologies

Construction Methods

Open Top Installation

Modularization

Advanced Welding Techniques

Steel Plate Reinforced Concrete Structures

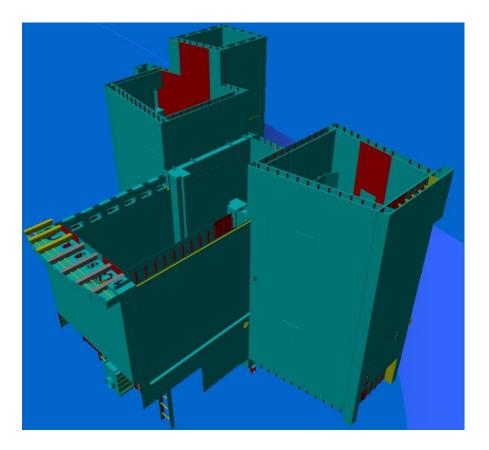
All Weather Construction & Round the Clock Work

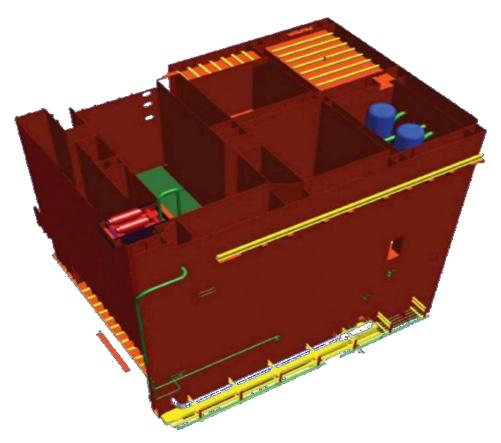
- Concrete Composition Technologies
- Excavation Techniques
- Cable Installation
- Area Completion Schedule Management
- Application of Computer Systems for Inform ation Management and Control

Open-top Construction HRP-1000, Zhangzhou Steam Generator installation

All three SGs for unit 2 of the Zhangzhou NNB in China's Fujian province have been installed over a five-day period,

The hoisting of the second SGs took just 2 hours and 54 minutes, "setting a new record in the history of nuclear power".


Zhangzhou NPP Reactor Pressure Vessel Installation, Nov. 2. 2021



Module categories : Structural module

CA01 25mX29mX26m, 750T

CA20 21mX14mX21m, 872T

Modularization Design and Construction

- Parallel construction, shorten the construction period, Achieve manufactory
- pre-fabrication and pre-assembly, to improve the production quality

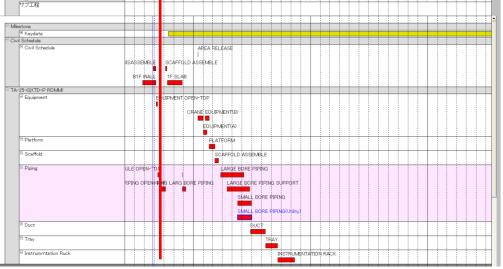
Nuclear Island	Struc. Module	Equip. Module	Total		
Reactor Building	65	12	77		
Auxiliary Building	19	42	61		
Total	84(29)	54(59)	138(88turbine)		

Modular Construction

Pros and Cons need to be evaluated based on the job site conditions

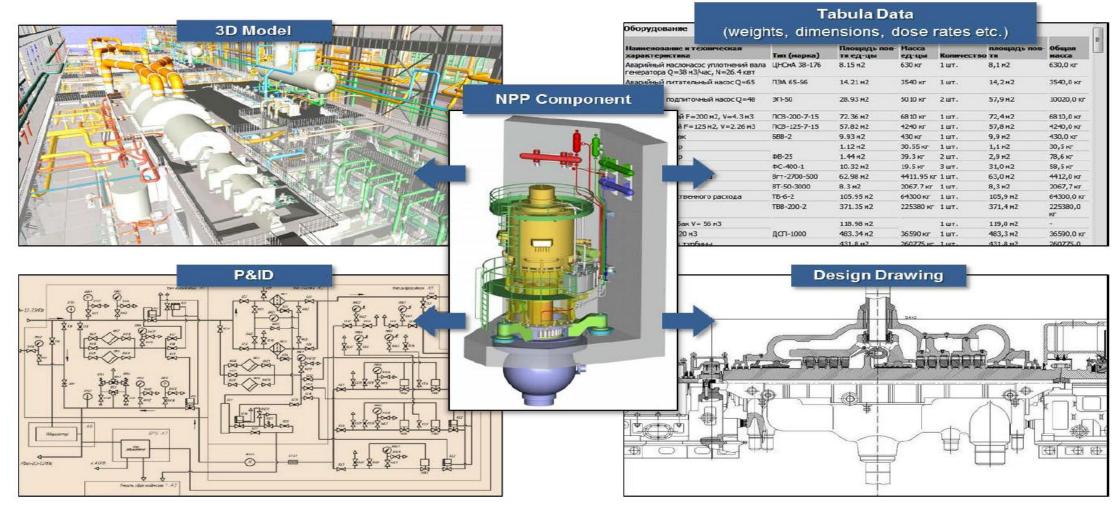
Pro

- Reduce Schedule (If Module is applied to CP)
- Reduce Field Work and Leveled On-site Manpower
- Increase Productivity and Quality under Factory Environment
- More Safely and efficiently at Ground Level Work
- Reusability of PPM Engineering to the Nth Plants


Con

- Increase Engineering for Module
- Increase Temporary Support Structure
- **×** Early Material Requirements
- Additional Transportation Cost (Large trailer truck, Barge)
- Increase Lifting/Rigging Requirements (Crane, Lifting Jig)
- Inspection of Modular

Construction Schedule with 6D



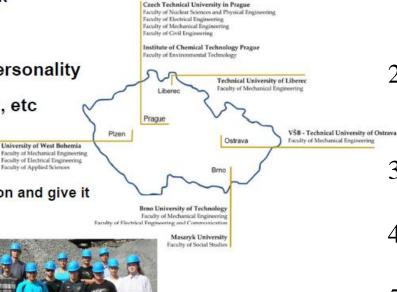
3D-model linked with Schedule

Information system for engineering data management, based on 3D models

NUCLEAR GRADUATE SCHOOL

Work force planning

CENEN – CzEch Nuclear Education Network


CENEN - CzEch Nuclear Education Network

- Czech nuclear education network
- 7 universities
- Free association without legal personality
- Partners from industry, research, etc state institutions
- Currently, there is an effort
 to revive the activities of the association and give it

legal personality

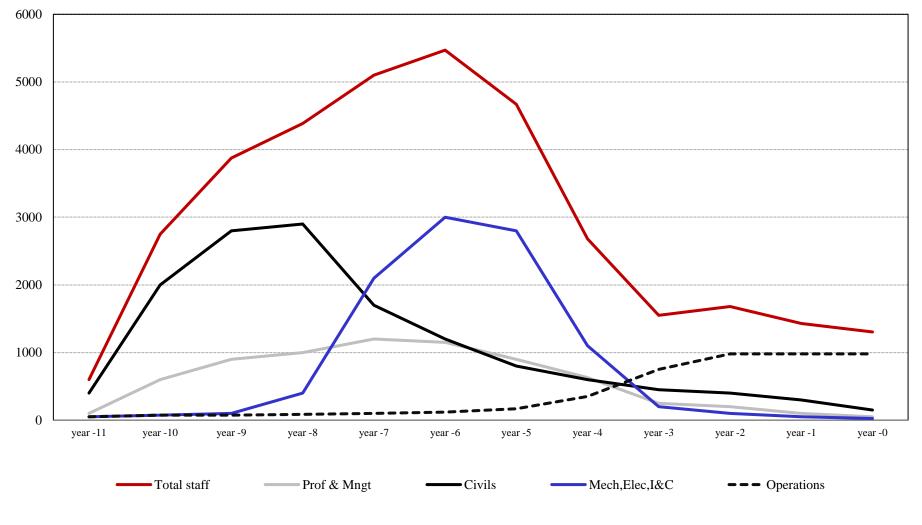
NUCLEAR EDUCATION NETWOR

Goal

- 1. Analysis and prediction of human resources needs in the context of the current and planned nuclear activities of the Czech Republic.
- 2. Monitoring and cataloging of educational activities in the field of
- technical education
- 3. Support of technical education in the Czech Republic.
- 4. Preparation and implementation of educational events
- 5. Provision of advice and support, expert activities.
- 6. Implementation of educational activities.

UZBEKISTAN PLANS TO BUILD NPP WITH 2 UNITS OF RUSSIAN VVER-1200 POWER REACTO R THE CAPACITY OF WHICH ARE 1,2 GW EACH (2,4 GW total capacity)

NUMBER OF PERSONNEL IN THE NPP (PLANNED)


Subdivision	Number of persons					
Management	235					
Operation	537					
Safety and reliability	234					
Repairs/ Maintenance	211					
Engineering support	24					
Advanced Control System TP service and IT	475					
Educational and training	48					
Production and technical support and quality	42					
Chief Inspector Division	24					
Design support for the construction	17					
Planning of supply and acquisition of equipment	9					
Planning, economic and estimates	11					
TOTAL	1867					

NUMBER OF TRAINED PERSONNEL WITH HIGHER EDUCATION

Years of graduate	2020	2021	2022	2023	2024	2025	2026	2027	2028	Total b y 2028	2029	2030	Total by 203 0
Masters's degree													
Moscow Engineering Physics Institute	15	30	30	30	30	30	30	30	30	255	30	30	315
National University of Uzbekistan		15	20	20	20	20	20	20	20	155	20	20	195
Samarkand State University		12	12	12	12	12	12	12	12	96	12	12	120
TOTAL for master's degree	15	57	62	62	62	62	62	62	62	506	62	62	630
Bachelor's degree													
Tashkent branch of MEPhI				100	100	100	100	100	100	600	100	100	800
Tashkent State Technical University			40	40	40	40	40	40	40	280	40	40	800
TOTAL for bachelor's degree			40	140	140	140	140	140	140	880	140	140	1160
TOTAL	15	57	102	202	202	202	202	202	202	1 386	202	202	1 790

As a result of the implementation of the personnel training programme, the required number of personnel with higher education (1567 people) will be prepared for the needs of the NPP with a reserve of 223 people.


Typical Site Skills Profile – Twin Unit Site

- **KINGS** KEPCO INTERNATIONAL NUCLEAR GRADUATE SCHOOL

47

Future New Nuclear Build in Europe

Recommendations

• Establish a Long-Term Plan for Human Resource Development

- How can we support the development of 6 to 9 GWe of new nuclear capacity?
- After the handover from the EPC (Engineering, Procurement, and Construction) contractor, who will be responsible for operating the newly built nuclear power plants (NPPs)?
 - For the operation of an NPP, we require 6 shifts.
 - Each team should consist of 10 operators: 5 operators in the Main Control Room (including SRO, RO, TO, EO, SA) and 5 operators in the Local Control Room.
- Consider setting up a Polish Nuclear Education Network similar to CENEN
 - Develop a joint research policy project focused on human resource development (HRD).

CENEN : Czech Nuclear Education Network