

Środowiskowe Laboratorium Ciężkich Jonów UW

Wzbudzenia kulombowskie w INFN Laboratori Nazionali di Legnaro PRZESZŁOŚĆ, TERAŹNIEJSZOŚĆ i PRZYSZŁOŚĆ

SEMINARIUM FIZYKI JĄDRA ATOMOWEGO 19.12.2019

stitito Nazionale di Fisica Nucleare – Italy

INFN-LNL

- Coulex @LNL
- ⁴²Ca results
- **SPIDER**
- First Experiment: ⁶⁶Zn
- Next Experiments: ⁹⁴Zr, ¹¹⁶Sn, ¹³⁰Xe, ⁵⁸Ni

Future Perspectives

- ▶ **4** National Laboratories
- **20** Divisions
- 6 Associated Groups
- **3** National Centers and Schools
- 1 Consortia (EGO, European Gravitational) Observatory)
- **5** Lines of Research:
 - CSN1: Particle Physics
 - CSN2: Astroparticle Physics

CSN3: Nuclear Physics

- CSN4: Theoretical Physics
- CSN5: Technological Physics

SEMINARIUM FIZYKI JĄDRA ATOMOWEGO, 19.12.2019

INFN LNL Accelerators

INFN-LNL

- Coulex @LNL
- ▶ ⁴²Ca results
- > SPIDER
- First Experiment: ⁶⁶Zn
- Next
 Experiments:
 ⁹⁴Zr, ¹¹⁶Sn,
 ¹³⁰Xe, ⁵⁸Ni

FuturePerspectives

SEMINARIUM FIZYKI JĄDRA ATOMOWEGO, 19.12.2019

Stable beams at INFN LNL

INFN-LNL

- Coulex @LNL
- ▶ ⁴²Ca results
- SPIDER
- First Experiment: ⁶⁶Zn
- Next Experiments: ⁹⁴Zr, ¹¹⁶Sn, ¹³⁰Xe, ⁵⁸Ni

Future Perspectives

- Available beams (official LNL list):
- Beams that need special permits can be developed (for example, Cd beams)

SEMINARIUM FIZYKI JĄDRA ATOMOWEGO, 19.12.2019

Coulomb excitation

- INFN-LNL Beam energy < Safe energy (~ 5 MeV/A)</p> Coulex @LNL ⁴²Ca - results de-Excitation $\frac{d\sigma_{clx}}{d\sigma_{clx}} = \frac{d\sigma_{Ruth}}{d\sigma_{clx}} \cdot P\left(i \longrightarrow f\right)$ **SPIDER** γ-ray $d\Omega$ $d\Omega$ Example: first 2⁺ state in an even-even target nucleus First
 - ~|<2+||E2||0+>|2 $P\left(0_{1}^{+} \longrightarrow 2_{1}^{+}\right) = F\left(\theta, E_{P}\right) B(E2) \left[1 + 1.32 \frac{A_{P}}{Z_{T}} \frac{\Delta E}{\left(1 + \frac{A_{P}}{A}\right)^{2}}\right]$

Access to: transition probabilities, spectroscopic quadrupole moments

Next **Experiments:** ⁹⁴Zr, ¹¹⁶Sn, ¹³⁰Xe, ⁵⁸Ni

Experiment:

⁶⁶Zn

Future Perspectives

Typical COULEX setup:

Gamma detector:

To measure γ-ray yields

Particle detector:

- To select Coulomb excitation events
- To distinguish between projectile and target
- To select the scattering angle
- To perform the Doppler correction
- To monitor the experiment

SEMINARIUM FIZYKI JĄDRA ATOMOWEGO, 19.12.2019

COULEX of 42Ca - 2010

- INFN-LNL
- Coulex @LNL
- ▶ ⁴²Ca results
- **SPIDER**
- First Experiment: ⁶⁶Zn
- Next **Experiments:** ⁹⁴Zr, ¹¹⁶Sn, ¹³⁰Xe, ⁵⁸Ni

Future Perspectives Superdeformed band in ⁴⁰Ca:

- $B(E2) [4_2^+ \rightarrow 2_2^+] = 170 \text{ W.u.} (DSAM)$
- deformation in the side band $\beta_2=0.6$ \bigcirc E.Ideguchi et al., PRL 87 (2001) 222501 C.J.Chiara et al., PRC 67 (2003) 041303(R)

Superdeformation in other isotopes:

- ³⁶Ar: C.E.Svensson et al., PRL 85 (2000) 2693
- ³⁸Ar: D.Rudolph et al., PRC 65 (2002) 034305 \bigcirc
- ⁴⁰Ar: E.Ideguchi et al., PLB 686 (2010) 18
- ⁴⁴Ti: D.C.O'Leary et al., PRC 61 (2000) 064314

COULEX of ⁴²**Ca – 2010**

- INFN-LNL
- Coulex @LNL
- ▶ ⁴²Ca results
- **SPIDER**
- First Experiment: ⁶⁶Zn
- Next Experiments: ⁹⁴Zr, ¹¹⁶Sn, ¹³⁰Xe, ⁵⁸Ni
- Future Perspectives

- Beamtime: Feb.2010, INFN LNL ٢
- 0 Beam: ⁴²Ca, E=170 MeV
- 0 Targets: 208 Pb, 1 mg/cm² 197 Au, 1 mg/cm²
- AGATA: 3 triple clusters, 143.8 mm from the target
- DANTE: 3 MCP detectors, 0 θ range from 100° -144 $^{\circ}$

SEMINARIUM FIZYKI JĄDRA ATOMOWEGO, 19.12.2019

COULEX of ⁴²**Ca – 2010**

- INFN-LNL
- Coulex @LNL
- ▶ ⁴²Ca results
- **SPIDER**
- First Experiment: ⁶⁶Zn
- Next Experiments: ⁹⁴Zr, ¹¹⁶Sn, ¹³⁰Xe, ⁵⁸Ni

Future Perspectives

KHK et al., PRL 117, 062501 (2016) KHK et al., PRC 97, 024326 (2018)

SEMINARIUM FIZYKI JĄDRA ATOMOWEGO, 19.12.2019

4000

Kasia Hadyńska-Klęk

3392

1867

3392

COULEX of 42Ca – results

	INFN-LNL		2	$\langle I_i \ E2 \ $	$I_f \rangle [e]$	fm ²]	$B(E2\downarrow;I)$	+ i
			$I_i^+ \to I_f^+$	Present	SM	BMF	Present	
•	Coulex @LNL		$\overline{2^+_1 \rightarrow 0^+_1}$	$20.5^{+0.6}_{-0.6}$		÷	$9.7^{+0.6}_{-0.6}$	
			$4^+_1 \rightarrow 2^+_1$	$24.3^{+1.2}_{-1.2}$			$7.6^{+0.7}_{-0.7}$	8
•	⁴² Ca - results		$6^+_1 \rightarrow 4^+_1$	$9.3^{+0.2}_{-0.2}$			$0.77\substack{+0.03\\-0.03}$	(
•	SPIDER		$0^+_2 \rightarrow 2^+_1$	$22.2^{+1.1}_{-1.1}$			57^{+6}_{-6}	
	Firet		$2^+_2 \rightarrow 0^+_1$	$-6.4^{+0.3}_{-0.3}$			$1.0\substack{+0.1 \\ -0.1}$	14
	Experiment: ⁶⁶ Zn		$2^+_2 \rightarrow 2^+_1$	$-23.7^{+2.3}_{-2.7}$			$12.9^{+2.5}_{-2.5}$	
			$4^+_2 \rightarrow 2^+_1$	42^{+3}_{-4}			23^{+3}_{-4}	
•	Next Experiments:		$2^+_2 ightarrow 0^+_2$	26^{+5}_{-3}			15 ⁺⁶ -4	
	⁹⁴ Zr, ¹¹⁶ Sn, ¹³⁰ Xe, ⁵⁸ Ni		$4_2^+ \rightarrow 2_2^+$	46^{+3}_{-6}			27^{+4}_{-6}	
				$\langle I_i \ E2 \ $	$I_f \rangle [e$	fm ²]	Q_s	p [
			$2^+_1 \rightarrow 2^+_1$	-16^{+9}_{-2}			-12^{+7}_{2}	<u></u>
•	Future Perspectives		$2^+_2 \rightarrow 2^+_2$	-55^{+15}_{-15}			-42^{+12}_{-12}	

SEMINARIUM FIZYKI JĄDRA ATOMOWEGO, 19.12.2019

COULEX of 42Ca - triaxial superdeformation

- INFN-LNL
- Coulex @LNL
- ▶ ⁴²Ca results
- > SPIDER
- First Experiment: ⁶⁶Zn
- Next
 Experiments:
 ⁹⁴Zr, ¹¹⁶Sn,
 ¹³⁰Xe, ⁵⁸Ni
- FuturePerspectives

SEMINARIUM FIZYKI JĄDRA ATOMOWEGO, 19.12.2019

COULEX of 42Ca – triaxial superdeformation

- INFN-LNL
- Coulex @LNL
- ▶ ⁴²Ca results
- **SPIDER**
- First Experiment: ⁶⁶Zn
- Next Experiments: ⁹⁴Zr, ¹¹⁶Sn, ¹³⁰Xe, ⁵⁸Ni
- Future Perspectives

<u> </u>	(02)	(02)	(α^2)	(02)	(α^2)
State	$\langle Q^2 \rangle_{\rm exp}$	$\langle Q^2 \rangle_{\rm SM}$	$\sigma(Q^2)_{\rm SM}$	$\langle Q^2 angle_{ m BMF}$	$\sigma(Q^2)_{\rm BMF}$
0^{+}_{1}	500 (20)	240	470	100	250
2^+_1	900 (100)	250	490	100	310
0^{+}_{2}	1300 (230)	1200	500	1900	520
2^{+}_{2}	1400 (250)	1130	500	1900	300
State	$\langle \cos(3\delta) \rangle_{\exp}$	$\langle \cos($	$\left. 3\delta \right) angle_{\mathrm{SM}}$	$\langle \cos(3$	$\left \delta \delta \right\rangle_{ m BMF}$
0^{+}_{1}	0.06 (10)	0	.34	0	.34
0^{+}_{2}	0.79 (13)	0	.67	0	.49

SEMINARIUM FIZYKI JĄDRA ATOMOWEGO, 19.12.2019

COULEX of 42Ca – triaxial superdeformation

- INFN-LNL
- Coulex @LNL
- ▶ ⁴²Ca results
- > SPIDER
- First
 Experiment:
 ⁶⁶Zn
- Next Experiments: ⁹⁴Zr, ¹¹⁶Sn, ¹³⁰Xe, ⁵⁸Ni
- FuturePerspectives

$$\bar{\beta} = \sqrt{\langle \beta^2 \rangle} = \sqrt{\frac{\langle Q^2 \rangle}{q_0^2}}$$

$$\bar{\gamma} = \frac{1}{3} \operatorname{arc} \langle \cos(3\gamma) \rangle$$

J. Srebrny and D. Cline, Int. J. Mod. Phys. E20, 422 (2011)

SEMINARIUM FIZYKI JĄDRA ATOMOWEGO, 19.12.2019

<u> </u>	(02)	(02)	(α^2)	(02)	(α^2)
State	$\langle Q^2 \rangle_{\rm exp}$	$\langle Q^2 \rangle_{\rm SM}$	$\sigma(Q^2)_{\rm SM}$	$\langle Q^2 angle_{ m BMF}$	$\sigma(Q^2)_{\rm BMF}$
0^{+}_{1}	500 (20)	240	470	100	250
2^+_1	900 (100)	250	490	100	310
0^{+}_{2}	1300 (230)	1200	500	1900	520
2^{+}_{2}	1400 (250)	1130	500	1900	300
State	$\langle \cos(3\delta) \rangle_{\exp}$	$\langle \cos($	$\left. 3\delta \right) angle_{\mathrm{SM}}$	$\langle \cos(3$	$\left \delta \delta \right\rangle_{ m BMF}$
0^{+}_{1}	0.06 (10)	0	.34	0	.34
0^{+}_{2}	0.79 (13)	0	.67	0	.49

COULEX of 42Ca - triaxial superdeformation

- INFN-LNL
- Coulex @LNL
- ▶ ⁴²Ca results
- SPIDER
- First
 Experiment:
 ⁶⁶Zn
- Next Experiments: ⁹⁴Zr, ¹¹⁶Sn, ¹³⁰Xe, ⁵⁸Ni
- FuturePerspectives

$$\bar{\beta} = \sqrt{\langle \beta^2 \rangle} = \sqrt{\frac{\langle Q^2 \rangle}{q_0^2}}$$

$$\bar{\gamma} = \frac{1}{3} \operatorname{arc} \langle \cos(3\gamma) \rangle$$

J. Srebrny and D. Cline, Int. J. Mod. Phys. E20, 422 (2011)

SEMINARIUM FIZYKI JĄDRA ATOMOWEGO, 19.12.2019

State	$\langle Q^2 angle_{ m exp}$	$\langle Q^2 angle_{ m SM}$	$\sigma(Q^2)_{ m SM}$	$\langle Q^2 angle_{ m BMF}$	$\sigma(Q^2)_{\rm BMF}$
0^{+}_{1}	500 (20)	240	470	100	250
2^+_1	900 (100)	250	490	100	310
0^{+}_{2}	1300 (230)	1200	500	1900	520
2^{+}_{2}	1400 (250)	1130	500	1900	300
State	$\langle \cos(3\delta) \rangle_{\exp}$	$\langle \cos($	$\left. 3\delta \right) angle_{\mathrm{SM}}$	$\langle \cos(3$	$\left \delta \delta \right\rangle_{ m BMF}$
0^{+}_{1}	0.06 (10)	0	.34	0	.34
0^{+}_{2}	0.79 (13)	0	.67	0	.49

 $\mathbf{0}_2^+ \ ar{eta} = \mathbf{0.43(4)}$ and $ar{\gamma} = \mathbf{13(}_6^5)^\circ$

Kasia Hadyńska-Klęk

COULEX of 42Ca - triaxial superdeformation

- INFN-LNL
- Coulex @LNL
- ▶ ⁴²Ca results
- SPIDER
- First
 Experiment:
 ⁶⁶Zn
- Next Experiments: ⁹⁴Zr, ¹¹⁶Sn, ¹³⁰Xe, ⁵⁸Ni
- FuturePerspectives

$$\bar{\beta} = \sqrt{\langle \beta^2 \rangle} = \sqrt{\frac{\langle Q^2 \rangle}{q_0^2}}$$

$$\bar{\gamma} = \frac{1}{3} \operatorname{arc} \langle \cos(3\gamma) \rangle$$

J. Srebrny and D. Cline, Int. J. Mod. Phys. E20, 422 (2011)

SEMINARIUM FIZYKI JĄDRA ATOMOWEGO, 19.12.2019

State	$\langle Q^2 angle_{ m exp}$	$\langle Q^2 angle_{ m SM}$	$\sigma(Q^2)_{ m SM}$	$\langle Q^2 angle_{ m BMF}$	$\sigma(Q^2)_{\rm BMF}$
0^{+}_{1}	500 (20)	240	470	100	250
2_{1}^{+}	900 (100)	250	490	100	310
0^{+}_{2}	1300 (230)	1200	500	1900	520
2^{+}_{2}	1400 (250)	1130	500	1900	300
State	$\langle \cos(3\delta) \rangle_{\exp}$	⟨cos($\left. 3\delta \right) angle_{\mathrm{SM}}$	$\langle \cos(3$	$\left \delta \delta \right\rangle_{ m BMF}$
0^{+}_{1}	0.06 (10)	0	.34	0	.34
0^{+}_{2}	0.79 (13)	0	.67	0	.49

 $\mathbf{0}_2^+$ $ar{eta}=\mathbf{0.43(4)}$ and $ar{\gamma}=\mathbf{13(}_6^5)^\circ$

SEMINARIUM FIZYKI JĄDRA ATOMOWEGO, 19.12.2019

PRESENT

GALILEO 1st Phase

- INFN-LNL
- Coulex @LNL
- ▶ ⁴²Ca results

SPIDER

- First Experiment: ⁶⁶Zn
- Next Experiments: ⁹⁴Zr, ¹¹⁶Sn, ¹³⁰Xe, ⁵⁸Ni
- Future Perspectives

- 25 HPGe Compton-suppressed detectors (GASP type)
- FWHM (@1332.5 keV) < 2.4 keV
- Efficiency (@1332.5 keV) = 2.1%
- Complete digital DAQ (takes advantage of the developments made for AGATA):
 - Trigger-less mode
 - Typical operational rate ~ 20 kHz/det
 - Common clock synchronization
 - Local data processing
 - **GALILEO 2nd phase**: 30 GASP detectors + 10 triple cluster

SEMINARIUM FIZYKI JĄDRA ATOMOWEGO, 19.12.2019

GALILEO – ancillary detectors

INFN-LNL

- Coulex @LNL
- ▶ ⁴²Ca results

SPIDER

First Experiment: ⁶⁶Zn

Next Experiments: ⁹⁴Zr, ¹¹⁶Sn, ¹³⁰Xe, ⁵⁸Ni

Future Perspectives

- Light charged particle detectors: EUCLIDES, Trace
- Neutron detector: Neutron Wall
- Recoil detector: Recoil Filter Detector
- Fast timing & High energy γ-ray detector: LaBr array
- Plunger (lifetime measurements) + EUCLIDES
- **Coulomb excitation detector: SPIDER**

EUCLIDES

Neutron Wall

Plunger

SEMINARIUM FIZYKI JĄDRA ATOMOWEGO, 19.12.2019

Recoil Filter Detector

SPIDER – Silicon Ple DEtectoR

- INFN-LNL
- Coulex @LNL
- ▶ ⁴²Ca results
- **SPIDER**
- First Experiment: ⁶⁶Zn
- Next Experiments: ⁹⁴Zr, ¹¹⁶Sn, ¹³⁰Xe, ⁵⁸Ni

Future Perspectives

M. Rocchini, K. Hadyńska-Klęk, A. Nannini et al., to be submitted

SEMINARIUM FIZYKI JĄDRA ATOMOWEGO, 19.12.2019

Commissioning experiment – Coulomb Excitation of 66Zn (2016)

- INFN-LNL
- Coulex @LNL
- ⁴²Ca results
- SPIDER
- First
 Experiment:
 ⁶⁶Zn
- Next Experiments: ⁹⁴Zr, ¹¹⁶Sn, ¹³⁰Xe, ⁵⁸Ni
- FuturePerspectives

SEMINARIUM FIZYKI JĄDRA ATOMOWEGO, 19.12.2019

- ▶ Beam: ⁶⁶Zn (240 MeV, 1 1.5 pnA)
- ► TANDEM-XPU
- ► Target: 1 mg/cm² of ²⁰⁸Pb
- 4 days of measurement
- ► GALILEO + SPIDER

Benchmark reaction

																(
z			A4Se	55Se	66Se	675e	685e	69 <i>5e</i>	-20S#	-21Se	72Se	738e	74 Se	75Se	7hSe	т
	61.43	62A2	5542	64 A s	65As	66 A s		6	67.			12As	1388	74 A a	" ንሉደ	-10
92	600a	610e	5206	630e	640 e	650e		0				710e	720e	730e	74 0 €	7:
	570a	6001	5101	6201	6008	6403		_				7001	7.01	7201	*30£	74
90	08Zu	5 7 2⊥	50Zu	0.Zm	62ZL	632н	642в	C3Zn		67Zu	68Z1	59Zu	70Zn	7.ZL	¶2Zr	7:
	57Ca	50Ca	59Cu	60Cu	61Cu	62Cu	62Cu	64Cu	65Cu	6605	67Ca	SDCa	S?Cu	70Cz	*1Ce	73
28	56Ni	57 M	58M	59N.	60Ni	6.Ni	62Ni	62Ni	é4Ni	ÉSNI	66Ni	67M	63N.	Soni	70Ni	т
	55Co	55Co	57Co	58Co	59°Cc	60Co	61Co	6200	63Co	6100	65Co	56Co	STC0	68Cc	69Cc	70
38	54Fe	557e	557e	57 F e	5%Fe	59 F e	60Fe	61Fe	62Fs	€3₽e	64Pe	657e	66 P e	S7Pe	6%Fe	6
	28		30		52		34		38		38		4C		42	

Commissioning experiment – Coulomb Excitation of 66Zn

- INFN-LNL
- Coulex @LNL
- ⁴²Ca results
- **SPIDER**
- First **Experiment:** ⁶⁶Zn
- Next **Experiments:** ⁹⁴Zr, ¹¹⁶Sn, ¹³⁰Xe, ⁵⁸Ni
- **Future** Perspectives

- ▶ $B(E2; 2_1^+ \rightarrow 0_1^+)$ and $Q_s(2_1^+)$ known with high precision ⇒ **Commissioning**
- Low-lying structure of stable and nearly stable Zn isotopes:
 - Several interpretations (vibrational nuclei, quasi-rotational bands, y-soft nuclei)
 - > No firm conclusions, many **discrepant results** regarding key observables, the case of ⁶⁶Zn

	NDS	M. Koizumi et	K. M
B(E2; $4_1^+ \rightarrow 2_1^+$)	18(3)	17.5(7)	
B(E2; $2_2^+ \rightarrow 2_1^+$)	330(130	41(14)	

M. Koizumi et al., Eur. Phys. J. A 18, 87 (2003) 87 K. Moschner et al., Phys. Rev. C 82, (2010) 014301

loschner et

8.4(15)

- Shape coexistence and triaxiality already observed in Ge and Se isotopes
- **0₂+ state** in Zn isotopes:
 - ▶ B(E2) known only for the $0_{2^+} \rightarrow 2_{1^+}$ transition for A = 64, 68, 70

► Energy vs mass ⇒ Unusual trend

0 ⁺ ₂	2342	41	2307	4 <u>†</u>	2451	<u>4</u> ⁺	2417	
4 ⁺	2186	0 ₂ +	1910	0 ₂ +	2372	2 ⁺	1883	41
2 ⁺ ₂	1805	22	1799	2 ⁺ ₂	1873	02	1656	22
2 ⁺ ₁	954	2 ⁺	992	2 <mark>1</mark>	1039	2 ⁺	1077	02
								21
0 <u>1</u> 63	⁰ ² Zn	0 <u>1</u> 64	₀ ^I Zn	0 <u>1</u> 66	₀ گ r	0 <u>1</u> 68	٥ Zn	<u>0</u> † 7

Coulomb Excitation of 66Zn – results

- INFN-LNL
- Coulex @LNL
- ▶ ⁴²Ca results
- **SPIDER**
- **First Experiment:** ⁶⁶Zn
- Next **Experiments:** ⁹⁴Zr, ¹¹⁶Sn, ¹³⁰Xe, ⁵⁸Ni
- Future Perspectives

SEMINARIUM FIZYKI JĄDRA ATOMOWEGO, 19.12.2019

Coulomb Excitation of 66Zn – results: gamma-ray spectra

FWHM of 2₁+ -> 0₁+

- simulated = 11.8 keV (GEANT4)
- Measured = 11.3 keV
- $* 0_2^+ -> 2_1^+$: only the upper limit was available in the literature

SEMINARIUM FIZYKI JĄDRA ATOMOWEGO, 19.12.2019

Coulomb Excitation of 66Zn – physics

- INFN-LNL
- Coulex @LNL
- ⁴²Ca results
- **SPIDER**
- First **Experiment:** ⁶⁶Zn
- Next **Experiments:** ⁹⁴Zr, ¹¹⁶Sn, ¹³⁰Xe, ⁵⁸Ni
- Future Perspectives

- values achieved
- First measurement of **B(E2) values from 0_2^+**: B(E2; $0_2^+ \rightarrow 2_1^+$), B(E2; $0_2^+ \rightarrow 2_2^+$)
- First measurement of **B(E3; 3_1^- \rightarrow 0_1^+)** in ⁶⁶Zn using Coulomb excitation
- Quadrupole sum rule
 - **0**₁+: $\langle \beta \rangle = 0.225(8), \langle \gamma \rangle = 43^{\circ}(3^{\circ})$
- Comparison with **BMF calculations** (*T. Rodriguez*)

and A.Gargano)

Data already available in the literature confirmed, sufficient precision to distinguish between discrepant

• **0**₂+: $\langle \beta \rangle = 0.055(5)$

coexistence of an traixial-oblate-deformed 01 and a spherical 0₂ state

Shell Model calculations in various model spaces and using different interactions - under progress (F.Nowacki

PRC - in preparation

SEMINARIUM FIZYKI JĄDRA ATOMOWEGO, 19.12.2019

Coulomb Excitation of ⁹⁴Zr (2018)

- Coulex @LNL
- ⁴²Ca results
- **SPIDER**
- First Experiment: ⁶⁶Zn
- Next **Experiments: 94Zr**, ¹¹⁶Sn, ¹³⁰Xe, ⁵⁸Ni

Future Perspectives

- g factors indicate very different configurations of 2_1 (neutron) dominance) and 2₂ (proton dominance)
- strong M1 $2_2 \rightarrow 2_1$ transition ($\delta = 0.02(2)$, B(M1)=0.33(5) μ_{2N})suggests mixed-symmetry character of the 2₂ state
- observation of a strong $2_2 \rightarrow 0_2$ transition (19 W.u.) deformed band built on 0₂
- shell model calculations suggest an oblate shape

QUESTIONS:

• What is the shape of ⁹⁴Zr in 2_{1,2} states?

• measurement of quadrupole moments of $2_{1,2}$ states – verification of the spherical-deformed (oblate?) scenario

▶ is mixing between the coexisting structures small, like in ⁹⁶Zr and ⁹⁸Sr?

• Is 2₂ a mixed-symmetry state?

• are quadrupole moments of $2_{1,2}$ states similar?

 \blacktriangleright y-ray angular distributions yielded two possible values of δ : 0.02(2) and 2.2(5) – which one is correct?

• How important are octupole correlations in ⁹⁴Zr?

▶ 3⁻ excitation cross section is related to B(E3; $3 \rightarrow 0 +$)

Coulomb Excitation of ⁹⁴**Zr (2018)**

INFN-LNL

- Coulex @LNL
- ▶ ⁴²Ca results
- **SPIDER**
- First Experiment: ⁶⁶Zn
- Next **Experiments: 94Zr**, ¹¹⁶Sn, ¹³⁰Xe, ⁵⁸Ni

Future Perspectives

- ⁹⁴Zr beam at 374 MeV
- ²⁰⁸Pb target

• Gamma ray detectors

GALILEO 25 HPGe Compton-suppressed detectors Total FWHM (@1332.5 keV) ~ 0.2% Total Efficiency (@1332.5 keV) ~ 2%

LaBr3:Ce 6 3" X 3" Lanthanum Bromide Scintillators Total FWHM (@1332.5 keV) ~ 2% Total Efficiency (@1332.5 keV) ~ 4%

• Particle detector SPIDER

SEMINARIUM FIZYKI JĄDRA ATOMOWEGO, 19.12.2019

Coulomb Excitation of ⁹⁴**Zr (2018)**

SEMINARIUM FIZYKI JĄDRA ATOMOWEGO, 19.12.2019

GOSIA ANALYSIS:

76 experimental yields20 known spectroscopic data (lifetime, mixing and branching ratios)

- B(ΩL)
- Qs(2₁), Qs(2₂)
- Deformation parameters (β , γ)
- δ for the transition $2_2 \rightarrow 2_1$

Classified

Coulomb Excitation of ¹¹⁶Sn (2018)

- INFN-LNL
- Coulex @LNL
- ⁴²Ca results
- **SPIDER**
- First Experiment: ⁶⁶Zn
- Next **Experiments:** ⁹⁴Zr, ¹¹⁶Sn, ¹³⁰Xe, ⁵⁸Ni
- **Future** Perspectives

- Coulomb Excitation

Proposal: M. Siciliano (INFN LNL), M. Saxena (ŚLCJ UW), A. Ilana Sison (INFN LNL) Data analysis: M. Siciliano

Coulomb Excitation of ¹¹⁶Sn (2018)

SEMINARIUM FIZYKI JĄDRA ATOMOWEGO, 19.12.2019

INFN-LNL

Collectivity in Xenon Isotopes

IBM - O(6)-like hypotesis:

- A. Gade et al., NPA 665, 268 (2000)
- G. Rainovski *et al.*, PLB 683, 11 (2010) ?
- L. Coquard *et al.*, PRC 83, 044318 (2011)

Coulex @LNL

- ▶ ⁴²Ca results
- **SPIDER**
- First Experiment: ⁶⁶Zn
- Next **Experiments:** ⁹⁴Zr, ¹¹⁶Sn, 130Xe, ⁵⁸Ni

Future Perspectives

SEMINARIUM FIZYKI JĄDRA ATOMOWEGO, 19.12.2019

- INFN-LNL
- Coulex @LNL
- ▶ ⁴²Ca results
- **SPIDER**
- First Experiment: ⁶⁶Zn
- Next **Experiments:** ⁹⁴Zr, ¹¹⁶Sn, 130Xe, ⁵⁸Ni

Future Perspectives

¹³⁰Te ββ-Decay @CUORE

- Decay to ground state: standard detection method
- Decay to **excited state** (coincidence analysis):
- background-free environment
- lower Q-value \Rightarrow larger T_{1/2}

SEMINARIUM FIZYKI JĄDRA ATOMOWEGO, 19.12.2019

- **INFN-LNL**
- Coulex @LNL
- ⁴²Ca results
- **SPIDER**
- First Experiment: ⁶⁶Zn
- Next **Experiments:** ⁹⁴Zr, ¹¹⁶Sn, 130Xe, ⁵⁸Ni
- **Future** Perspectives

Ονββ-decay rate and Nuclear Matrix Element (NME):

- Calculation of $\beta\beta$ -decay rates \Rightarrow **Design of experiments**
- oscillation data \Rightarrow **Neutrino masses**
- Importance of deformation of the states involved in ββ-decay:
 - Shell Model E. Caurier, F. Nowacki and A. Poves, EPJ A 36, 195 (2008)
 - Beyond-Mean-Field T.R. Rodriguez and G. Martinez-Pinedo, PRL 105, 252503 (2010)

Coulex – shapes of ground and excited 0+ states

SEMINARIUM FIZYKI JADRA ATOMOWEGO, 19.12.2019

Majorana Mass (Particle Physics)

• If $0v\beta\beta$ -decay will be observed \Rightarrow Neutrino Majorana mass, and then, combining with neutrino

- INFN-LNL
- Coulex @LNL
- ⁴²Ca results
- **SPIDER**
- First Experiment: ⁶⁶Zn
- Next **Experiments:** ⁹⁴Zr, ¹¹⁶Sn, 130Xe, ⁵⁸Ni

Future Perspectives

- analysis
- 0+@1793keV clearly identified (the one already considered by CUORE)
- L. Coquard et al., PRC 82, 024317 (2010) ⇒ 0+ @1590keV and 2+ @2018keV
- @1590keV refuted
- Need to clarify the position of excited 0⁺ states

SEMINARIUM FIZYKI JĄDRA ATOMOWEGO, 19.12.2019

• $\beta\beta$ -decay to states with $J \neq 0$ suppressed \Rightarrow **Identification of excited 0**+ **states really crucial for coincidence**

 \blacktriangleright E.E. Peters et al., PRC 94, 024313 (2016) \Rightarrow Close doublet with **0**+ **@2017keV** and **2**+ **@2018keV** but **0**+

Multi-Step Coulex of ¹³⁰Xe to obtain:

- \mathbf{Q}_{s} moments
- First determination of quadrupole invariants
- B(Ω L) with precisions of ~ 5–10%

Questions we want to answer:

- Is ¹³⁰Xe an O(6)-like nucleus?
- Which are the low-lying 0⁺ states in ¹³⁰Xe?
- Which is their shape?

- INFN-LNL
- Coulex @LNL
- ▶ ⁴²Ca results
- **SPIDER**
- First Experiment: ⁶⁶Zn
- Next **Experiments:** ⁹⁴Zr, ¹¹⁶Sn, 130**Xe**, ⁵⁸Ni
- Future Perspectives

- Beam: ¹³⁰Xe with 545 MeV and 1 pnA (PIAVE + ALPI)
- Target: ²⁰⁸Pb 1 mg/cm², self-supporting
- Experimental setup:
 - GALILEO (ε = 2.4% @ 1.3 MeV)
 - ♦ SPIDER
 - ✦ LaBr₃:Ce detectors

Classified

Credits: M. Rocchini (Uni of Guelph)

SEMINARIUM FIZYKI JĄDRA ATOMOWEGO, 19.12.2019

SEMINARIUM FIZYKI JĄDRA ATOMOWEGO, 19.12.2019

FUTURE

Coulomb Excitation of 58Ni (2020)

- INFN-LNL
- Coulex @LNL
- ⁴²Ca results
- **SPIDER**
- First Experiment: ⁶⁶Zn
- Next **Experiments:** ⁹⁴Zr, ¹¹⁶Sn, ¹³⁰Xe, ⁵⁸Ni
- Future Perspectives

- further and more precise experimental data in order to better quantify the role of core-excitations in ⁵⁶Ni and the arising collectivity in nuclei close to it.
- ⁵⁸Ni has been suggested as the perfect candidate only two valence neutrons outside the ⁵⁶Ni core

SEMINARIUM FIZYKI JĄDRA ATOMOWEGO, 19.12.2019

Coulomb Excitation of 58Ni (2020)

- **INFN-LNL**
- Coulex @LNL
- ⁴²Ca results
- **SPIDER**
- First Experiment: ⁶⁶Zn
- Next **Experiments:** ⁹⁴Zr, ¹¹⁶Sn, ¹³⁰Xe, ⁵⁸Ni
- **Future** Perspectives

- confirmed by the positive value of $g(2_1^+)$
- New RDM measurement resolves the discrepancy and suggest much less collectivity
- the relevance of core excitations and collectivity

DSAM measurement 3 times larger than SM prediction \Rightarrow Underestimation of core excitations (also

> No evident reasons to prefer one of the two measurements \Rightarrow <u>Third measurement will help to understand</u>

Only 1 measurement: neither possible to observe higherlying states nor to perform a differential cross-section measurement \Rightarrow $Q_s(2_1)^{exp} = -10 (\pm 6^{stat} \pm 7.5^{sys}) efm^2$

SEMINARIUM FIZYKI JĄDRA ATOMOWEGO, 19.12.2019

Kasia Hadyńska-Klęk

3264

Coulomb Excitation of 58Ni (2020)

- First Experiment: ⁶⁶Zn
- Next **Experiments:** ⁹⁴Zr, ¹¹⁶Sn, ¹³⁰Xe, ⁵⁸Ni
- **Future** Perspectives

SEMINARIUM FIZYKI JĄDRA ATOMOWEGO, 19.12.2019

Proposal: M. Rocchini (INFN Firenze), KHK (ŚLCJ UW), A. Nannini (INFN Firenze)

- How important are core-excitations in ⁵⁸Ni? Which is the nature of its **low-lying states?**
- Quantities to be measured:
 - ► B(E2; $4^+_1 \rightarrow 2^+_1$)
 - $Q_{s}(2^{+}_{1})$
 - $O_{s}(2^{+}_{2}) (and O_{s}(2^{+}_{3}), O_{s}(2^{+}_{4}))$
 - Relative signs for matrix elements connecting 2⁺ states to 0⁺ states, to deduce deformation of $0^{+}_{g.s.}$, 0^{+}_{2} and 0+3
 - Experiment by-product: $B(E2; 2^+_1 \rightarrow 0^+_1)$

AGATA is coming back to town

- **INFN-LNL**
- Coulex @LNL
- ⁴²Ca results
- **SPIDER**
- First Experiment: ⁶⁶Zn
- Next **Experiments**: ⁹⁴Zr, ¹¹⁶Sn, ¹³⁰Xe, ⁵⁸Ni

Future Perspectives

25-26 March 2019 **INFN-LNL** Europe/Rome timezone

Workshop AGATA@LNL for stable beams

Many ideas, many projects AGATA will be back at LNL in 2021

SEMINARIUM FIZYKI JĄDRA ATOMOWEGO, 19.12.2019

AGATA Efficiency

Nominal and compact position position (-10 cm) at 1,3 MeV considering a reaction chamber of AI 4 mm.

Start of the camapign with 20TC. By the end of the campaign with 30TC.

Configuration	Nominal position	Compact position					
20TC	8.8%	13.9%					
30TC	13.6%	19.0%					

Complementary detectors

- PRISMA vacuum mode, angular coverage 80 msr, from Theta=20° to 100°.
- EUCLIDES silicon det. (with beam absorbers) Eff_p = 60% Eff_alpha = 25%
- EUCLIDES plunger configuration (with beam absorbers) Eff_p = 25% Eff_alpha = 15%
- TRACE highly-segmented silicon det. (up to four modules) E-DE with PSA for light charged particles at least up to Oxygen - 22 degrees angular coverage each.
- Plunger (grazing and zero degrees configuration): range 7 micrometers to 1.2 cm
- LaBr (3"x3") 10 detectors Eff (1.3 MeV) = 2.3%
- LaBr (3.5"x8") 10 detectors Eff (1.3 MeV) = 3%
- NEDA Eff_1n = 27% Eff_2n = 2.8%
- SPIDER Coulex detector backward angles, angular coverage 124-165 degrees
- PARIS 8 clusters Efficiency curve attached.
- Mini-orange Si-Li: resolution ~3-4KeV @1MeV, efficiency about 16% in the range of 800-2500 keV. Efficiency at lower energy (200-800 keV)10% (estimated).
- Recoil Filter Detector: 18 HI detectors, efficiency 20-50 % depending on the reaction, TOF determination of evaporation residua (required pulsed beam as a time reference), variable distance from the target (1m-1,50m), theta angular coverage 2-7 deg. (at 1,3m from the target).

Radioactive beams at INFN LNL – Selective Production of Exotic Species

- INFN-LNL
- Coulex @LNL
- ⁴²Ca results
- **SPIDER**
- First Experiment: ⁶⁶Zn
- Next Experiments: ⁹⁴Zr, ¹¹⁶Sn, ¹³⁰Xe, ⁵⁸Ni
- **Future** Perspectives

- Next generation ISOL-type accelerator facility aimed to develop RIB
- power to reach 10^3 f/s
- Once ionized and mass-selected RIB is boosted and re-accelerated using ALPI
- New and existing upgraded experimental experimental stations

BEST cyclotron: 2 exits - 2 proton beams feeding 2 targets at the same time, max 70 MeV

Proton beam of 40 MeV, 0.2mA on multi-foil Uranium Carbide (UCx) target designed to sustain 10kW beam

Courtesy: M. Rocchini

SEMINARIUM FIZYKI JĄDRA ATOMOWEGO, 19.12.2019

Radioactive beams at INFN LNL – Selective Production of Exotic Species

Radioisotopes

SEMINARIUM FIZYKI JĄDRA ATOMOWEGO, 19.12.2019

SPES at INFN LNL

SEMINARIUM FIZYKI JĄDRA ATOMOWEGO, 19.12.2019

SPES at INFN LNL

- INFN-LNL
- Coulex @LNL
- ⁴²Ca results
- SPIDER
- First Experiment: ⁶⁶Zn
- Next Experiments: ⁹⁴Zr, ¹¹⁶Sn, ¹³⁰Xe, ⁵⁸Ni

FuturePerspectives

SPES International Workshop: 47 Letter of Intents

SPES LOIs Topics

- Ground States Properties
- Nuclear Moments
- Direct Reaction with ActiveTarget
- Direct Reaction with Si Detectors
- Multinucleon Transfer
- Coulomb Excitation
- Collective excitation
- Fusion
- Super Heavy
- Oynamics

Courtesy: A. Nannini

SEMINARIUM FIZYKI JĄDRA ATOMOWEGO, 19.12.2019

- Exploring shape coexistence, triaxiality and configuration mixing in ^{90,92}Kr (KHK, M. Zielińska)
- Coulomb-excitation measurements in nuclei around ¹³²Sn ¹³⁵Sb, ^{126,128}Cd (INFN Firenze, INFN Napoli, CEA Saclay)
- Search for Exotic-Octupole deformation effects in n-rich Ce-Xe-Ba Nuclei (University of Oslo, INFN LNL)
- Proton-neutron balance of quadrupole-collective states of even-even n-rich Isotopes (TU Darmstadt)
- Shape coexistence in Kr isotopes towards N = 60 (INFN LNL)
- Spectroscopy studies around ⁷⁸Ni and beyond N=50 via transfer and Coulomb excitation reactions (INFN LNL)

The future is bright... and busy

Special thanks to SPIDER collaboration:

M. Rocchini, A. Nannini, N. Marchini, B. Melon, M. Chiari, M. Ottanelli, P. Sona Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze and INFN, Sezione di Firenze, Firenze, Italy

J. J. Valiente-Dobón, A. Goasduff, D. Testov, P. R. John, D. Mengoni, D. Bazzacco, P. Cocconi, R. Menegazzo, L. Ramina, M. Rampazzo⁵, F. Recchia, D. Rosso, M. Siciliano INFN, Laboratori Nazionali di Legnaro and Dipartimento di Fisica e Astronomia, Università degli Studi di Padova and INFN, Sezione di Padova, Italy

P. Napiorkowski Heavy Ion Laboratory, University of Warsaw, Poland

M. Zielińska CEA Saclay, IRFU/SPhN, France

D. T. Doherty University of Surrey, Guildford, United Kingdom

G. Benzoni INFN, Sezione di Milano, Milano, Italy

+ participants of all experiments with SPIDER

SEMINARIUM FIZYKI JĄDRA ATOMOWEGO, 19.12.2019

