

Reakcje deuteron-deuteron przy ekstremalnie niskich energiach –

zimna fuzja w eksperymentach akceleratorowych

Zakład Fizyki Jądrowej, Uniwersytet Warszawski 9.05.2024

Konrad Czerski

Cold Fusion: Heavy Water Electrolysis

Stanley Pons & Martin Fleischmann

1989

Press conference at the University of Utah:

We have solved the energy problem of the world!

Cold Fusion: Gas-Loading Experiments

Fig.1.1: Sketch of one of the reactors used by the NEDO Project and typical result. Note that excess heat was produced when the Ni-Cu powder supported on meso-porous silica was exposed to hydrogen. The time scale is in hundreds of hours [1].

A. Kitamura et al., Int. J. of Hydrogen Energy 43 (2018) 16187-16200 Y. Iwamura et.al, J. Condensed Matter Nucl. Sci. 33(2020) 1–13

Cold Fusion: Gas Loading Experiments

Research programs

Japan , since 2016, NEDO, Nissan, Toyota, Tokyo U, Tohuku U USA, Google, 2016-2020 EU, CleanHME, 2020-2025 USA, ARPA-E, 2023-2025, Stanford U, Berkley U, MIT

CF Puzzle (need for a theoretical explanation)

Coulomb barrier penetration (electron screening) branching ratio ${}^{4}\text{He}/{}^{3}\text{He} \approx 10^{6}$, no gammas (threshold resonance) poor reproducibility (strongly improved, chemical reactions)

Looking for a proper material and nuclear origin 100W per 100g

Overview: C.P. Berlinguette et al., Nature 570 (2019) 45-51

Clean Power from Hydrogen-Metal Systems – CleanHME –

Participant No.	Participant organization name	Participant shor name
1 (Coordinator)	University of Szczecin	USZ
2	Institute for Solid-State Nuclear Physics	IFK
3	Institut Josef Stefan	JSI
4	Maritime University of Szczecin	AM
5	FUTUREON	FUT
6	Uppsala Universitet	UU
7	BroadBit Energy Technologies	BET
8	Istituto Nazionale di Fisica Nucleare	INFN
9	Politecnico di Torino	POLITO
10	Universita Degli Studi di Siena	UNISI
11	VEGATEC	VEGA
12	Centre National de la Recherche Scientifique	CNRS
13	SART von Rohr	SART
14	LIFCO Industrie	LIFCO
15	LAKOCO	LAKOCO
16	Massachusetts Institute of Technology	MIT
17	Lakehead University	LU

Achievements: Materials I

CNRS, LIFCO, BET

Ex: $Ni_{5.25}Cu_{0.75}Al_2CO_3(OH)_{16} - 4 H_2O$

03/10/2023

Achievements: Materials II

Very simple synthesis for active materials for LENR Ni/Cu, Ni/Fe, Ni/Bi, ZrO₂, Ni/Cu+ThO₂

03/10/2023

Third Review Meeting

Achievements: Calorimetry

03/10/2023

Third Review Meeting

Nuclear Effects: Electron Screening

s-wave penetration factor

model independent approach

Accelerator Experiments (HV) I

Accelerator Experiments (HV) II

 $d + d \longrightarrow {}^{3}He + n$

$$d + d \longrightarrow {}^{3}H + p$$

metal target Europhys. Lett. 54 (2001) 449 J. Kasagi et al., J.Phys.Soc.Jap. 71 (2002) 2281 F. Raiola et al., Eur.Phys.J. A13 (2002) 337 F. Raiola et al., Eur.Phys.J. A19 (2004) 283

gas target $U_e = 25 \pm 5 \text{ eV}$ U.Greife et al., Z.Phys. A351 (1995) 107

Experimental (HV) and Theoretical Results

dielectric function theory: free and bound electron polarization cohesion screening

electron-gas parameter r_s

3 $r_s =$ $4\pi n$

Europhys. Lett. 2004, Phys. Rev. C 2008

Materials 2023

Laboratory of Nuclear and Medical Physics accelerator with ultra high vacuum

prototype ECR ion source low emittance , high current, light ions – a few mA

Dreebit, Dresden, Germany

Target Chamber: Electron Auger Spectroscopy mass spectroscopy µ-metal

 $p = 10^{-11} mbar$

PREVAC, Poland ¹³

UHV Electron Screening – Resonance Contribution

flat contribution

16 transition matrix elements

s.p. resonance contribution

$$\sigma_{\rm R} = \frac{\pi}{k^2} \frac{\Gamma_d \Gamma_p}{(E - E_{\rm R})^2 + \frac{\Gamma^2}{4}}$$

interference effect

$$\sigma = \left| \sqrt{\sigma_F} + \sqrt{\sigma_R} \right|^2 = \sigma_F + \sigma_R + 2\sigma_F \sigma_R \cos\varphi$$

EPL 2016

Effective Electron Mass

Compund Nucleus ⁴He

16

n/p Branching Ratio & Angular Distribution

Gas Traget Measurements

Shape Coexistence in ⁴He

Phys. Rev. C Lett. 2022

D + D Reactions: Room Temperature

Resonance cross section:

$$\sigma(E) = \frac{\pi}{k^2} \frac{\Gamma_d(E) \Gamma_p}{(E - E_R)^2 + \frac{1}{4} \Gamma_\alpha^2}$$

Resonance contribution also depends on the screening energy:

$$\Gamma_d(E) = 2kP(E + U_e) |\gamma|^2$$

$$\Gamma_{\alpha} = 0.1 \ eV$$

10kW

100g 🛋

$$\Gamma_{\alpha} = \Gamma_d + \Gamma_p + \Gamma_n + \Gamma_{pc}$$

Phys. Rev. C Letters 2022 ²⁰

Decay Channels of the 0⁺ Resonance

Observation of e+e- Emission

Geant 4 simulations

Phys. Rev. C Lett. 2024

Conclusions

1. Electron screening

electron screening locally enhanced by impurities and crystal defects

nuclear reaction rates at room temperature can change dramatically, 40 orders of magnitude

2. 0⁺ threshold resonance in ⁴He

balance between the resonance and electron screening

explains ⁴He production and increases reaction rates at room temperature up to 7 orders of magnitude, changes the branching ratio, electromagnetic transitions dominate, the resonance energy depends on the electron screening

3. Demonstration of the cold fusion in accelerator experiments

People

IFK Berlin

A. Huke

- G. Ruprecht
- D. Weißbach
- D. Böhm
- K. Czerski

U Szczecin

- M. Kaczmarski
- N. Targosz-Sleczka
- A. Kowalska
- D. Böhm
- G. Das Haridas
- M. Valat
- R. Dubey
- K. Czerski

CleanHME @ European Parliament

- Thursday, September 5, 2024
- o 9:00 AM 4:00 PM
- o European Parliament Strasbourg

A New Path from Green Hydrogen to Green Energy