Pierwsza eksperymentalna obserwacja procesu wzbudzenia jądra atomowego poprzez wychwyt elektronu do powłoki elektronowej atomu

NARODOWE CENTRUM BADAŃ JĄDROWYCH ŚWIERK

Plan prezentacji

- Wprowadzenie
- Wcześniejsze próby obserwacji procesu NEEC
- Eksperyment w Argonne National Laboratory
- Podsumowanie

Wprowadzenie – odkrycie procesu konwersji wewnętrznej

Jądrowy proces konwersji wewnętrznej został zaobserwowany po raz pierwszy w roku 1911 przez Baeyer et al. podczas pomiarów energii elektronów pochodzących z rozpadów jądrowych.

Odkrycie umożliwiło określanie energii rozpadów jądrowych zanim rozwinięto metody scyntylacyjne (1948). Odkrycie wymusiło także dalsze badania dotyczące charakteru procesu konwersji wewnętrznej:

- Czy emitowane elektrony pochodzą z wnętrza jądra czy też z powłok atomowych?
- W jaki sposób proces konwersji wewnętrznej powiązany jest z innymi procesami jądrowymi, w szczególności z rozpadem gamma?

Baeyer, O., O. Hahn and L. Meitner, Physik. Z. <u>12</u>, 273 (1911).

Wprowadzenie –współczynnik konwersji wewnętrznej

Ellis et al. w latach 20 ubiegłego wieku po raz pierwszy wyznaczyli współczynnik konwersji (dla radu) czyli prawdopodobieństwo zajścia procesu konwersji wewnętrznej względem rozpadu gamma.

$$\boldsymbol{\alpha}^{:} = \frac{N_{e}}{N_{Y}}$$

W kolejnych latach znajomość procesu konwersji wewnętrznej wykorzystano m. in. w badaniach reakcji jądrowych, wzbudzeń Coulombowskich czy spontanicznego rozszczepienia.

Ellis, C. D. and W. A. Wooster, Proc. Roy. Soc. (London) A114, 276 (1927).

Wprowadzenie –konwersja wewnętrzna

- Konwersja wewnętrzna to de-ekscytacja jądra atomowego, która konkuruje z emisją gamma
- Występuje po rozpadzie beta lub alfa, który pozostawia jądro atomowe w stanie wzbudzonym
- Konwersja wewnętrzna może być postrzegana jako absorpcja wirtualnego fotonu przez elektron z danej powłoki atomowej K, L lub wyższej, który następnie wyrzucany jest z atomu z energią

www.radioactivity.eu.com

Wprowadzenie –konwersja wewnętrzna

Współczynniki konwersji:

- wzrastają wraz ze wzrostem liczby atomowej Z,
- wzrastają wraz rosnącą multipolowością przejść gamma,
- zmniejszają się wraz ze wzrostem energii przejścia,
- zmniejszają się wraz ze wzrostem głównej liczby kwantowej n_i powłoki elektronowej, z której zostaje wyrzucony elektron.

BAND et al., At. Data Nucl. Data Tables 2002

Jacek Rzadkiewicz

10³

Wprowadzenie –konwersja wewnętrzna

Współczynniki konwersji zależą również od stanu ładunkowego atomu (jonu).

charge state	es.					
Charge	α_k^Q			α	2	
state	Calc.d	Calc. ^e	Exp. ^b	Exp. c	Calc. ^d	Calc. ^e
0	11.985(7) ^a		13.912(1) ^a		13.912(1) ^a	
44				~13	13.2	
45	0	5.9		≥13	1.8	7.5
46	0	0.6	≥13	11±2	1.7	2.3
47	0	0.20	2.7±0.5	2.7 ± 0.2	1.6	1.8
48	0	0	1.0 ± 0.2	1.0 ± 0.2	1.1	1.0

TABLE III. Internal conversion coefficients of the first excited nuclear state of ¹²⁵Te for various ionic

Rozkład stanów ładunkowych jonów po przejściu przez tarczę Th 1 mg/cm2.

ATTALLAH et al. PRC 1997

W roku 1976 Goldanskii i Namiot po raz pierwszy sformułowali przewidywania dotyczące istnienia procesu odwrotnego do procesu konwersji wewnętrznej. Przewidywali oni, że w wyniku wychwytu elektronu do powłoki elektronowej atomu może następować rezonansowe wzbudzenie stanów jądrowych (*ang. Nuclear Excitation by Electron Capture, NEEC*), w szczególności wzbudzenie stanów podstawowych i stanów izomerycznych.

Przewiduje się, że proces NEEC w środowisku plazmy astrofizycznej może wzbudzać długożyciowe stany izomeryczne do stanów krótkożyciowych i w ten sposób redukować występowanie danych izotopów we wszechświecie.

Goldanskii i Namiot zaproponowali przeprowadzenie obserwacji procesu NEEC w środowisku plazmy laserowej $n_e=10^{24}$ cm⁻³, $T_e=50-100$ eV

Oszacowali, że dla wyładowania lasera o energii 10 J i czasu wyładowania 10⁻⁹ s prawdopodobieństwo zajścia procesu NEEC wynosi ~3 x 10⁻¹⁴

W latach 1979-1992 przeprowadzono serie eksperymentów plazmowych, w których próbowano doprowadzić do populacji stanów wzbudzonych w ²³⁵U

Izawa et al. [3]	Arutyunan <i>et al. A</i> [4]	Arutyunan <i>et al. B</i> [5]	Bounds and Dyer [6]
CO ₂ laser	CO ₂ laser	500 keV <i>e</i> ⁻ beam 150 kA	CO ₂ laser
1 J, 100 ns	5 J, 200 ns		150 mJ, 35 μ s + = 10 ¹⁵ W cm ⁻² 700 fs 5 eV
$\approx 100 \text{ eV}$ $\approx 10^{19}$ $\langle \sigma_N v_e \rangle$ $\approx 10^{-20} \text{ cm}^3 \text{ s}^{-1}$ ≈ 1	$\sigma_N < 10^{-32} \text{ cm}^2$ $< 10^{-5}$	$\approx 20 \text{ eV}$ $3-30 \times 10^{19}$ σ_N $\approx 5 \times 10^{-32} \text{ cm}^2$ $\approx 3 \times 10^{-5}$	$\lambda_{ex} < 6 \times 10^7 \text{ s}^{-1}$ < 6×10^7
	Izawa et al. [3] CO ₂ laser 1 J, 100 ns $\approx 100 \text{ eV}$ $\approx 10^{19}$ $\langle \sigma_N v_e \rangle$ $\approx 10^{-20} \text{ cm}^3 \text{ s}^{-1}$ ≈ 1	Izawa Arutyunan et al. [3] et al. A [4] CO ₂ laser CO ₂ laser 1 J, 100 ns 5 J, 200 ns $= 100 \text{ eV}$ $= 10^{19}$ $\langle \sigma_N v_e \rangle$ $= 10^{-20} \text{ cm}^3 \text{ s}^{-1} \qquad \sigma_N < 10^{-32} \text{ cm}^2$ $= 1 \qquad < 10^{-5}$	IzawaArutyunanArutyunanet al. [3]et al. A [4]et al. B [5]CO2 laserCO2 laser500 keV e ⁻ beam1 J, 100 ns5 J, 200 ns= 100 eV= 20 eV= 10 ¹⁹ $3-30 \times 10^{19}$ $\langle \sigma_N v_e \rangle$ σ_N = 10 ⁻²⁰ cm ³ s ⁻¹ $\sigma_N < 10^{-32} cm^2$ = 1 $< 10^{-5}$ $= 3 \times 10^{-5}$

TABLE I. Summary of experiments investigating the excitation of the isomeric state ^{235m}U in a plasma.

NARODOWE

HARSTON and CHEMIN PRC 1999

HARSTON and CHEMIN (PRC 1999) pokazali, że dominującym mechanizmem populacji stanu izomerycznego ^{235m}U nie jest proces NEEC

Conditions	NEET	NEEC	Inelastic scattering	Photoexcitation
Plasma $T = 100 \text{ eV}$	$10^{-6} - 1$	10^{-11}	10^{-16}	$< 10^{-17}$
Plasma $T = 20 \text{ eV}$	$10^{-9} - 10^{-4}$	10^{-11}	10^{-17}	$< 10^{-17}$
500 keV e^- beam			10^{-7}	$< 10^{-7}$

ARODOWI

HARSTON and CHEMIN PRC 1999

W roku 2004 Morel et al. przeprowadzili eksperyment na spektrometrze LISE w Ganil, w którym podjęto próbę obserwacji procesu K-NEEC w jądrze ⁵⁷Fe podczas penetracji jonu Fe²⁶⁺ w krzemie (Si)

BADAŃ JADROWYCH

WIFRK

Morel et al., Nucl. Phys. A (2004)

W roku 2002 Zadernovsky i Carroll rozważali 'wyzwolenie' (triggering) stanu izomerycznego jądra ^{242m}Am poprzez różne procesy fizyczne m.in. NEEC i NEET.

Zadernovsky and Carroll., Hyperfine Interactions (2002)

W roku 2007 Palffy et al., pokazali że proces NEEC może być efektywnym sposobem 'wyzwalania' (triggering) stanów izomerycznych przy odpowiednich warunkach atomowych.

TABLE II.	Total	reso	nance	strength	s S	for	NEE	C and	х-гау
triggering o	f ison	iers.	NEEO	C occurs	in	the	nlj	orbital	. The
continuum e	lectror	i ene	rgy at	the reso	nan	ce is	den (oted by	E_c .

$^{A}_{Z}X$	nl_j	E_c (keV)	$S_{\text{NEBC}}^{I \rightarrow F}$ (b eV)	$S_{x \text{ ray}}^{I \rightarrow F} (b \text{ eV})$
93 ₄₂ Mo	$3p_{3/2}$	2.113	$9.1 imes 10^{-6}$	$1.4 imes 10^{-8}$
¹⁵² Eu	$2s_{1/2}$	5.204	$3.4 imes 10^{-4}$	$6.5 imes 10^{-5}$
¹⁷⁸ ₇₂ Hf	$1s_{1/2}$	51.373	$2.0 imes 10^{-7}$	$5.4 imes 10^{-8}$
189Os	$1s_{1/2}$	131.050	$1.2 imes 10^{-3}$	2.2×10^{-2}
204Pb	$2p_{3/2}$	55.138	$4.9 imes 10^{-5}$	$8.7 imes 10^{-6}$
235U	$2p_{1/2}$	21.992	$1.3 imes 10^{-1}$	$1.3 imes 10^{-2}$
²⁴² ₉₅ Am	$5p_{3/2}$	0.135	$3.6 imes 10^{-3}$	2.4×10^{-8}

NARODOWE

BADAŃ IADROWYCH

S_{NEEC}(²⁴²Am)=9 x 10⁻¹⁸ b eV*

Częściowy schemat rozpadu ⁹³Mo

Palffy et al., PRL 2007

*Zadernovsky and Carroll., Hyperfine Interactions (2002)

W roku 2012 Karamian i Carroll jako pierwsi zaproponowali 'jakościowy schemat' eksperymentu NEEC z wykorzystaniem wiązki ciężkich jonów i układu tarcz

Reaction	Product nuclide		Intermediate	Energy above	Atomic state		Resonance	Electron	
	Isomer	Spin, parity	parity	isomer, keV	Charge	Vacancy	MeV/u	energy, keV	
${}^{4}\text{He}({}^{91}\text{Zr},2n)$	^{93m} Mo	$21/2^+$	$17/2^{+}$	4.8	36+	$3p_{3/2}$	4.91	2.67	
$^{2}\mathrm{H}(^{241}\mathrm{Pu},n)$	$^{242m}\mathrm{Am}$	5-	3-	4.1	42+	$5p_{3/2}$	4.89	2.66	

Karamian and Carroll., Phys. At. Nucl (2012)

 W roku 2014 w ramach współpracy międzynarodowej rozpoczęły się prace przygotowawcze do pierwszej eksperymentalnej obserwacji procesu NEEC w jądrze ⁹³Mo

 Jądro ⁹³Mo posiada stan izomeryczny 21/2+ o energii 2425 keV z okresem połowicznego zaniku 6,85 h i potencjalny stan pośredniczący 17/2+, leżący 4,85(9) keV powyżej sanu izomerycznego

Nature (2018)

- Stan pośredniczący 17/2+, zasilany w procesie NEEC niemal natychmiast rozpada się (z okresem połowicznego zaniku $t_{1/2} = 3,5$ ns) do stanu podstawowego przez charakterystyczne przejścia gamma o energiach 268 keV, 685 keV i 1 478 keV
- Ponieważ przejście 268-keV nigdy nie powinno być widoczne w sekwencji rozpadu stanu izomerycznego 21/2+, można je uznać za jednoznaczną sygnaturę procesu wzbudzenia, w szczególności procesu NEEC

ARODOW ENTRUM ADROWYCH

 W kolejnym kroku należało dokonać wyboru potencjalnych wiązek jonów i pierwszej warstwy tarcz prowadzących do efektywnej produkcji izotopów ⁹³Mo, w szczególności stanów wysokospinowych

• Wybór reakcki ⁷Li(⁹⁰Zr, *p*3*n*)⁹³Mo został potwierdzony obliczaniami przekrojów czynnych za pomocą kodu PACE oraz dodatkowo poprzez jakościowe pomiary eksperymentalne w odwróconej kinematyce

- Eksperyment przeprowadzono na liniowym akceleratorze ciężkich jonów ATLAS w Argonne National Laboratory
- Użyto wiązki jonów ⁹⁰Zr o energii 840-MeV i średniej intensywności około 6×10⁸ jonów / s oraz tarczy naturalnego Li o grubości 1.55 mg cm⁻² (z zawartością około 92% 7Li)

NARODOWE CENTRUM BADAŃ JADROWYCH

WIFPK

- Jony ⁹³Mo po wyprodukowaniu w pierwszej warstwie tarczy docierają do tarcz hamujących, w których tracą energię oraz zmniejszają swój stan ładunkowy (zbliżają się do kolejnych 'czasoprzestrzeni' rezonansowych)
- W szczególności rozważano użycie dwóch tarcz: gazowej tarczy He oraz stałej tarczy węglowej
- Kolejną warstwę tarcz dobrano tak aby zapewnić odpowiednie warunki rezonansowe dla zajścia procesu NEEC
- Warunki rezonansowe zostały wyznaczone za pomocą kodu MCDF oraz obliczeń kinematyki jonów w poszczególnych tarczach

ARODOWE

CENTRUM BADAŃ JADROWYCH

WIFRK

Projekt i konstrukcja tarczy musiały spełniać następujące wymagania techniczne:

 Ochrona przed dość łatwym utlenianiem tarczy Li

 Odpowiednia grubość tarczy Li uwzględniająca z jednej strony efektywną produkcję izotopów 93Mo, a z drugiej odpowiednio duże energie 'na wejściu' tarczy 12C

 Odpowiednia przerwa między tarczą Li i C tak aby pikosekundowe stany leżące powyżej stanu izomerycznego 21/2+ zdążyły go zasilicić w czasie krótszym niż czas hamowania jonu w tarczy

 Niskie Z tarczy tak aby zapewnić wysokie stany ładunkowe jonów 93Mo

 Odpowiednia grubość tarczy 12C tak aby przeprowadzić jon przez pełen obszar rezonansów, odpowiednio w powłoce N i M jonów 93Mo

33 mg/cm² 4.2 mg/cm²

1.55 mg/cm²

Nature (2018)

- Układ tarcz został umieszczony centralnie w układzie spektrometrycznym Gammasphere składającym się z 96 detektorów Ge 'highpurity' (16 pierścieni)
- Dane były zbierane w tzw. potrójnej koincydencji z 'rate'ami' 40-50 kHz
- Czas pomiaru docelowego wynosił 62 h.

Prawdopodobieństwo wzbudzenia stanu izomerycznego

Wykluczenie innych niż NEEC procesów wzbudenia

Obliczono prawdopodobieństwo, że ^{93m}Mo zostanie wzbudzony w wyniku -nieelastycznego rozproszenia (wzbudzenia Coulomb'owskie i oddziaływanie jądrowe) dla energii powyżej bariery Coulomb'owskiej w tarczach 7Li i 12C (kod FRESCO) - wzbudzenia Coulomb'owskiego dla energii poniżej bariery w tarczy 208Pb (kod GOSIA)

$6\times 10^{-8}, 2\times 10^{-6}$ and 3×10^{-6} in the Li, C and Pb

P(ext)=P(NEEC)=0.010(3)

NARODOWE CENTRUM BADAŃ JĄDROWYCH ŚWIERK Nature (2018)

LETTER

doi:10.1038/nature25483

Isomer depletion as experimental evidence of nuclear excitation by electron capture

C. J. Chiara¹, J. J. Carroll², M. P. Carpenter³, J. P. Greene³, D. J. Hartley⁴, R. V. F. Janssens³[†], G. J. Lane⁵, J. C. Marsh¹[†], D. A. Matters⁶, M. Polasik⁷, J. Rzadkiewicz⁸, D. Seweryniak³, S. Zhu³, S. Bottoni³[†], A. B. Hayes⁹ & S. A. Karamian¹⁰[‡]

Dziękuję za uwagę!

