Jan Orlinski

Transverse flow of strange hadrons in heavy-ion collisions at a beam kinetic energy of a few GeV measured in HADES

27th of February 2025 Nuclear Physics Seminar Nuclear Physics Department, University of Warsaw

This work is part of a project co-financed by the N.S.C. under reference number 2024/53/N/ST2/02107

Introduction

- Goal of the talk: introduction to transverse flow analysis, review of status and current study;
- Particles selected for analysis are strange hadrons: K^+ , K^- and Λ^0 ;
- The issue of Kaon-Nuclear Matter potential and the role of Λ^0 baryons in astrophysics are discussed;
- Ongoing analysis of data collected by the HADES experiment in March 2019 — Ag+Ag collisions at 1.6 GeV/nucleon

Physical motivation

History of the Universe

- Heavy-ion collisions allow the study of matter in extreme conditions;
- The few-GeV energy regime is located between free quarks and the formation of hadrons;
- Our understanding of Quantum Chromo Dynamics in this area
 is still limited

Nuclear Physics Seminar, UW 27.02.2025

Jan Orlinski Faculty of Physics, University of Warsaw

Page 4 of 50

Nuclear matter

Starting point: liquid-drop model of the nucleus:

$$E_B = a_V A - a_S A^{2/3} - a_C \frac{Z(Z-1)}{A^{1/3}} - a_A \frac{(N-Z)^2}{A} + \delta(N,Z)$$

To obtain "nuclear matter" we extend the nucleus into infinite volume;

Nuclear matter

Starting point: liquid-drop model of the nucleus:

$$E_B = a_V A - a_S A^{2/3} - a_C \frac{Z(Z-1)}{A^{1/3}} - a_A \frac{(N-Z)^2}{A} + \delta(N,Z)$$

- To obtain "nuclear matter" we extend the nucleus into infinite volume;
- The surface and Coulomb contributions can be canceled $a_S = a_C = 0$;
- The pairing contribution can be omitted;

We assume infinite A and V, but well defined concentration $\rho = \left\langle \frac{A}{V} \right\rangle$

Equation of State of nuclear matter

- Nuclear matter can be described in thermodynamic terms ($\rho, T, \mu, p, \epsilon$, etc...);
- These variables are related by the Equation of State (EoS);
- The EoS describes, among others, the resistance of nuclear matter against compression;

A. Le Fèvre et al., Nucl. Phys. A 945 112 (2016)

- Method of study: transverse flow of protons in HIC;
- Soft (hard) EoS is more (less) susceptible to compression because if a slower (faster) increase of energy with growing matter density

Neutron Stars (NS)

V. Kalogera et al., arXiv 2111.06990v1

- There is a deep crossover between matter in NS's and atomic nuclei;
- NS's partly described with the EoS of nuclear matter;
- Matter at densities $\leq \rho_0$ forms the crust of the NS (with nuclei);
- Deeper we find Nuclear Matter at extreme conditions:
 - Free and stable neutrons
 - At highest ρ : free quarks?
- If and when does this transition happen?

The Hyperon Puzzle

- Currently observed masses of NS's are roughly in the range of $1-2M_{\odot}$;
- Some observed masses are $\geq 2M_{\odot}$ and strongly constrain theory;
- Theories assuming the presence of hyperons in NS core do not reproduce this range of masses;
- Simultaneously, the thermodynamic conditions inside strongly suggest production of strangeness...
- How to reconcile this tension?

J. Lattinger, https://stellarcollapse.org/nsmasses

Modification of K properties

- Hadronic density and temperature affect the mean value of the quark-antiquark condensate;
- In consequence, fundamental properties of particles are modified

$$m_K^{*2} f_K^{*2} = -\frac{m_u + m_s}{2} \langle u\bar{u} + s\bar{s} \rangle + \Theta(m_s^2)$$

Significant effect predicted for the transverse flow of charged K mesons: K⁺N repulsion and K⁻N attraction

J. Schaffner-Bielich et al. / Nuclear Physics A 625 (1997) 325-346

Transverse flow

Geometry of a heavy ion collision

By definition,
$$\vec{p}_{beam} = p_{beam} \hat{e}_z$$

Relativistic momentum phase-space:

$$p_t = \sqrt{p_x^2 + p_y^2},$$
$$y = \tanh^{-1} \beta_z$$
$$y_0 = \frac{y - y_{CM}}{y_{CM}}$$

- \blacksquare Polar angle heta, azimuthal angle ϕ
- \blacksquare Centrality determined by collision parameter b (not available in exp)

Non-central heavy ion collision

- Non-central heavy-ion collisions preselect certain azimuthal angles;
- The final kinematic distribution of particles is a composition of multiple factors:
 - non-isotropic collision zone,
 - pressure gradients,
 - in-medium effects,
 - Coulomb interaction.

A. Poskanzer et al., arXiv:08090409 [nucl-ex] (2002)

Fourier decomposition

- If the orientation of the collision is known (this is not trivial!), we can measure relative azimuthal angle of emitted particles;
- Reaction Plane: defined as the plane containing the collision vector \vec{b} and the beam momentum (\hat{e}_z);

Adapted from: B. I. Abelev et al. (STAR Collaboration), Phys. Rev. Lett. 103(25):251601 (2009)

 \blacksquare Then, the $\Delta \phi$ distribution:

$$\frac{dN}{d\Delta\phi} = \mathcal{N}\left(1 + 2\sum_{n} v_n \cos(n\Delta\phi)\right)$$

Nuclear Physics Seminar, UW 27.02.2025

Jan Orlinski Faculty of Physics, University of Warsaw

Page 14 of 50

Some flow predictions

- In this work, main harmonic coefficients are studied: directed flow (v_1) and elliptic flow (v_2) ;
- In the Center-of-Mass frame, we expect $v_1(y)$ to be an odd function (for a symmetrical collision system);
- From this follows $v_1(y = 0) = 0$;
- Asymmetry of directed flow is a benchmark of measurement quality;
- Flow is used to draw physical conclusions by comparing experimental results to transport model calculations.

Previous flow reports from HADES

Charged kaon flow in FOPI

Note: $v_{1,2}(p_t, y)$ maps were never published for Λ baryons in this energy range!

Jan Orlinski Faculty of Physics, University of Warsaw

Page 17 of 50

Nuclear Physics Seminar, UW 27.02.2025

V. Zinyuk et al. (FOPI) Phys. Rev. C 90, 025210 (2014)

The H A D E S

The High Acceptance Di-Electron Spectrometer

Layout of the Spectrometer

G. Agakichiev et al. (HADES Collaboration), Eur. Phys. J. A 41, 243 (2009)

The Ag segmented target

Layout of the Spectrometer

Momentum reconstruction (MDC)

- Solving differential equations of motion in a known magnetic field allows the reconstruction of \vec{p}
- Superconducting toroidal magnet with field up to 0.9 T.
- Resolution within a few %
- Momentum reconstruction only possible for charged particles!

Mass reconstruction

- From known trajectory, the particle's path length (l) can be calculated;
- We can use timestamps from the first (START) and last (ToF or RPC) detectors (Δt) to calculate average velocity $v = \beta c = l / \Delta t$;
- Mass can be then calculated from $p = \gamma m v$.
- The final resolution of mass reconstruction is a combination of:
 - momentum reconstruction resolution
 - accuracy of path reconstruction
 - timing resolution of the START detector
 - timing resolution of the ToF/RPC detectors

Event-plane reconstruction

- Event Plane: experimental estimation of the RP
- QEP
- EP orientation in HADES calculated from the distribution of projectile spectators in the FWall;
- Q-vector method based on charge-weighted average direction of hits;
- ➡ Limited spectator hits → finite resolution of reconstructed orientation

Centrality in HADES

- Impact parameter translated to experimental observables via Glauber MC
- In HADES centrality selected based on $N_{ToF+RPC}$
- Glauber MC model is applied to convert $N_{ToF+RPC}$ to $\langle b \rangle$ or $\langle A_{part} \rangle$;
- All flow results in this talk will be presented for the 10-40 % most central collisions;
- The selected centrality must:
 - have a well-defined Event Plane
 - have high multiplicity of strange hadrons •
 - provide a large statistical sample •

50

100 150

200 250

300

400

350

18

Glauber MC

Au+Au 1.23 AGeV

Glauber MC Au+Au 1.23 AGeV

K^{\pm} analysis

Identification of K^{\pm}

- Mass spectrum from time-of-flight measurement shows Gaussian peak around K[±] mass
- Background modelled with polynomial of 3rd degree (K^+) or exponential (K^-)
- Independent fits in p_T , y_0 and $\Delta \phi$ bins yield a 3D distribution of K^+ mesons
- Signal measurement must be sensitive to small variations in kaon signal!

Raw p_t : y distributions of K^{\pm} mesons

Raw reconstructed yields (no efficiency correction):

- $8.6 \cdot 10^6$ of K^+
- $6.7 \cdot 10^5$ of K^-

HADES provides a very wide acceptance for both particles

Fourier analysis

The $\Delta \phi$ distribution for given p_t and y_0 is used to obtain flow coefficients

For this cell, $v_1 = -0.0149 \pm 0.0015$ and $v_2 = -0.0122 \pm 0.0016$.

Directed flow (v_1 **) of** K^{\pm} **as function of** y_0

- All shown results are corrected for the finite EP reconstruction resolution
- No other efficiency effects considered
- Fast K^+ mesons flow "with" the protons, slow K^+ oppositely...
- Suggests a repulsive K^+N potential?

Directed flow (v_1 **) of** K^{\pm} **as function of** p_T

- All shown results are corrected for the finite EP reconstruction resolution
- No other efficiency effects considered

Elliptic flow (v_2 **) of K^{\pm} as function of** y_0

- All shown results are corrected for the finite EP reconstruction resolution
- No other efficiency effects considered

• K^+ exhibits negative v_2 , like the protons!

Elliptic flow (v_2 **) of K^{\pm} as function of** p_T

- All shown results are corrected for the finite EP reconstruction resolution
- No other efficiency effects considered

Λ analysis

Lambda reconstruction

The Λ^0 baryon is electrically neutral \Rightarrow no direct measurement main decay channel: $\Lambda \rightarrow p\pi^-$ (BR=64%).

Invariant mass of daughters = rest mass of mother.

 $p_{\pi} - + p_{n}$

D12

V0 Vtx

D_{v1}

π

Lambda mass fit example

- Signal is reconstructed by fitting linear bckg and Gaussian signal
- More sophisticated methods of bckg estimation can be used
- So far, the fitting method is satisfactory

Fitting the $p_t : y_0$ phase space...

Jan Orlinski Faculty of Physics, University of Warsaw

Page 37 of 50

Lambda $p_t : y_0$ distribution

Fitting the $p_t : y_0 : \Delta \phi$ phase space...

Jan Orlinski Faculty of Physics, University of Warsaw

Distribution of $v_{1,2}$ **coefficients**

- All shown results are corrected for the finite Event Plane reconstruction resolution
- No other efficiency effects were considered

Jan Orlinski Faculty of Physics, University of Warsaw

Page 40 of 50

Differential v_1 **distributions**

- The v_1 of Λ^0 baryons exhibits only small variations with p_t (if any),
- Qualitative difference between K^+ mesons and Λ baryons.

Differential v₂ **distributions**

• Caution: small horizontal shifts for readability only

• Negative v_2 of Λ^0 baryons corresponds with that of the K^+ and protons.

Summary

- The transverse flow of strange hadrons K^{\pm} and Λ^{0} emitted from Ag+Ag collisions at 1.58 GeV/nucleon is being analysed;
- The preliminary maps of $v_{1,2}$ in the momentum phase-space were obtained;
- Steps to the finalization of the results:
 - optimization of signal extraction,
 - study of the occupancy-related efficiency effects,
 - evaluation of systematic uncertainties;
- This may provide new insight into the interaction between these strange hadrons and the nuclear matter;
- Published results in this energy range is very limited, with the $v_{1,2}$ of Λ^0 never published before!

Jan Orlinski Faculty of Physics, University of Warsaw

Page 44 of 50

BACKUP SLIDES:

Event-plane reconstruction resolution

Standard method by J.-Y. Ollitrault was used to correct for the finite resolution of event plane reconstruction Event plane reconstruction resolution (J.-Y. Ollitrault, arXiv:9711003 [nucl-ex]) Resolution 0.8 Divide the spectators into two random sub-events (A and B) 0.6 and evaluate $\Delta \Psi_{AB} = \Psi_A - \Psi_B$ 0.4 1st harmonic 0.2 Resolution can be calculated as: 2nd harmonic 0 0-10 % 10-20 % 30-40 % 20-30 % $\mathscr{R} = \frac{\sqrt{\pi}}{2} \cdot \chi \cdot \exp\left(-\frac{\chi^2}{2}\right) \cdot \left|I_{\frac{n-1}{2}}\left(\frac{\chi^2}{2}\right) + I_{\frac{n+1}{2}}\left(\frac{\chi^2}{2}\right)\right|,$ Centrality class

where $I_k(x)$ is the modified Bessel function of 1° kind and $\chi^2 = -2 \ln \left(\frac{2 \cdot \Delta \Psi_{AB} (90^\circ - 180^\circ)}{\Delta \Psi_{AB} (0^\circ - 180^\circ)} \right)$

Jan Orlinski Faculty of Physics, University of Warsaw

Differential $v_1(y_0)$ **distributions**

Ag+Ag @ 1.58A GeV 10-20 % centrality Ag+Ag @ 1.58A GeV 20-30 % centrality

Proton distributions from 10-40 % centrality

Page 47 of 50

Differential $v_1(p_t)$ **distributions**

Ag+Ag @ 1.58A GeV 10-20 % centrality Ag+Ag @ 1.58A GeV 20-30 % centrality

Proton distributions from 10-40 % centrality

Page 48 of 50

Differential $v_2(y_0)$ **distributions**

Ag+Ag @ 1.58A GeV 10-20 % centrality Ag+Ag @ 1.58A GeV 20-30 % centrality

Proton distributions from 10-40 % centrality

Jan Orlinski Faculty of Physics, University of Warsaw

Page 49 of 50

Differential $v_2(p_t)$ **distributions**

Ag+Ag @ 1.58A GeV 10-20 % centrality Ag+Ag @ 1.58A GeV 20-30 % centrality

Proton distributions from 10-40 % centrality

Page 50 of 50