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Introduction

➠ Goal of the talk: introduction to transverse flow analysis, review of 
status and current study;  

➠ Particles selected for analysis are strange hadrons: ,  and ; 

➠ The issue of Kaon-Nuclear Matter potential and the role of  
baryons in astrophysics are discussed; 

➠ Ongoing analysis of data collected by the HADES experiment in 
March 2019 — Ag+Ag collisions at 1.6 GeV/nucleon

K+ K− Λ0

Λ0



Jan Orlinski
Faculty of Physics, University of Warsaw Page  of 3 50

Nuclear Physics Seminar, UW
27.02.2025

Physical motivation
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History of  
the Universe
➠ Heavy-ion collisions 

allow the study of 
matter in extreme 
conditions; 

➠ The few-GeV energy 
regime is located 
between free quarks 
and the formation of 
hadrons; 

➠ Our understanding of 
Quantum Chromo-
Dynamics in this area 
is still limited 
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Nuclear matter

➠ Starting point: liquid-drop model of the nucleus: 
 

 

➠ To obtain “nuclear matter” we extend the nucleus into infinite volume;

EB = aV A − aSA2/3 − aC
Z(Z − 1)

A1/3
− aA

(N − Z )2

A
+ δ(N, Z )
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Nuclear matter

➠ Starting point: liquid-drop model of the nucleus: 
 

 

➠ To obtain “nuclear matter” we extend the nucleus into infinite volume; 

➠ The surface and Coulomb contributions can be canceled ; 

➠ The pairing contribution can be omitted; 

➠ We assume infinite  and , but well defined concentration 

EB = aV A − aSA2/3 − aC
Z(Z − 1)

A1/3
− aA

(N − Z )2

A
+ δ(N, Z )

aS = aC = 0

A V ρ = ⟨ A
V ⟩
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Equation of State of nuclear matter
➠ Nuclear matter can be  

described in thermodynamic  
terms ( , etc…); 

➠ These variables are related  
by the Equation of State (EoS);   

➠ The EoS describes, among others,  
the resistance of nuclear matter 
against compression; 

➠ Method of study: transverse flow of protons in HIC; 

➠ Soft (hard) EoS is more (less) susceptible to compression because if a slower 
(faster) increase of energy with growing matter density 

ρ, T, μ, p, ϵ

A. Le Fèvre et al., Nucl. Phys. A 945 112 (2016)
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Neutron Stars (NS)
➠ There is a deep crossover between 

matter in NS’s and atomic nuclei; 

➠ NS’s partly described with the EoS 
of nuclear matter; 

➠ Matter at densities  forms the  
crust of the NS (with nuclei); 

➠ Deeper we find Nuclear Matter at 
extreme conditions: 

• Free and stable neutrons
• At highest : free quarks? 

➠ If and when does this transition 
happen?

≤ ρ0

ρ

V. Kalogera et al., arXiv 2111.06990v1
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The Hyperon Puzzle
➠ Currently observed masses of NS’s 

are roughly in the range of 1-2 ; 

➠ Some observed masses are  
and strongly constrain theory; 

➠ Theories assuming the presence of 
hyperons in NS core do not 
reproduce this range of masses; 

➠ Simultaneously, the thermodynamic 
conditions inside strongly suggest 
production of strangeness… 

➠ How to reconcile this tension?

M⊙

≥ 2M⊙

J. Lattinger, https://stellarcollapse.org/nsmasses
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Modification of K properties
➠ Hadronic density and temperature affect 

the mean value of the quark-antiquark 
condensate; 

➠ In consequence, fundamental properties 
of particles are modified 

➠ Gell-Mann—Oakes—Renner:  
 

 

➠ Significant effect predicted for the 
transverse flow of charged K mesons: 

 repulsion and  attraction 

m*2
K f *2

K = −
mu + ms

2
⟨uū + ss̄⟩ + Θ(m2

s )

K+N K−N

W. Weise, Prog. Theor. Phys. 
Supplement No. 149, 1 (2003)

m0(K
±)c2
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Transverse flow
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Geometry of a heavy ion collision
➠ By definition,  

➠ Relativistic momentum phase-space: 

 , 

 

➠ Polar angle , azimuthal angle 

➠ Centrality determined by collision parameter  (not available  in exp)

⃗pbeam = pbeam ̂ez

pt = p2
x + p2

y

y = tanh−1 βz

y0 =
y − yCM

yCM

θ ϕ

b
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A. Poskanzer et al., arXiv:08090409 [nucl-ex] (2002)

Non-central heavy ion collision

➠ Non-central heavy-ion collisions 
preselect certain azimuthal angles; 

➠ The final kinematic distribution of 
particles is a composition of 
multiple factors: 

• non-isotropic collision zone,
• pressure gradients,
• in-medium effects,
• Coulomb interaction.
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Fourier decomposition

Adapted from: 
B. I. Abelev et al. (STAR Collaboration), 
Phys. Rev. Lett. 103(25):251601 (2009)

➠ If the orientation of the collision  
is known (this is not trivial!), 
we can measure relative azimuthal 
angle of emitted particles; 

➠ Reaction Plane: defined as the plane  
containing the collision vector  
and the beam momentum (  ); 

➠ We define  as the azimuthal angle 
with respect to the Event plane 

➠ Then, the  distribution:  

b⃗
̂ez

Δϕ

Δϕ
dN

dΔϕ
= 𝒩 (1 + 2∑

n

vn cos(nΔϕ))
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Some flow predictions

➠ In this work, main harmonic coefficients are studied: directed flow ( ) 
and elliptic flow ( ); 

➠ In the Center-of-Mass frame, we expect  to be an odd function 
(for a symmetrical collision system); 

➠ From this follows ; 

➠ Asymmetry of directed flow is a benchmark of measurement quality; 

➠ Flow is used to draw physical conclusions by comparing experimental 
results to transport model calculations.

v1
v2

v1(y)

v1(y = 0) = 0
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Previous flow reports from HADES
 of charged kaons

in Au+Au @ 1.23A GeV

↘︎ 
 

 of protons
in Au+Au @ 1.23A GeV 

↓

v1,2

v1−4 https://dspace.cuni.cz/handle/
20.500.11956/170699

Eur.Phys.J.A 59 (2023) 4, 80

Preliminary PreliminaryCentrality 10 - 40 % Centrality 10 - 40 %

https://dspace.cuni.cz/handle/20.500.11956/170699
https://dspace.cuni.cz/handle/20.500.11956/170699
https://link.springer.com/article/10.1140/epja/s10050-023-00936-6
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Charged kaon flow in FOPI
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➠ Note:  maps were never published for  baryons in this energy range!v1,2(pt, y) Λ
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The  
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The  
High  
Acceptance  
Di- 
Electron  
Spectrometer
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Layout of the Spectrometer

ECAL

G. Agakichiev et al. (HADES Collaboration), 
Eur. Phys. J. A 41, 243 (2009)

The Ag segmented target
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Layout of the Spectrometer
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Momentum reconstruction (MDC)

➠ Solving differential equations of 
motion in a known magnetic field 
allows the reconstruction of   

➠ Superconducting toroidal magnet 
with field up to 0.9 T. 

➠ Resolution within a few % 

➠ Momentum reconstruction only 
possible for charged particles!

⃗p

G. Agakichiev et al. (HADES Collaboration), 
Eur. Phys. J. A 41, 243 (2009)
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Mass reconstruction

➠ From known trajectory, the particle’s path length (  ) can be calculated; 

➠ We can use timestamps from the first (START) and last (ToF or RPC)  
detectors (  ) to calculate average velocity ; 

➠  Mass can be then calculated from . 

➠ The final resolution of mass reconstruction is a combination of: 

• momentum reconstruction resolution
• accuracy of path reconstruction
• timing resolution of the START detector
• timing resolution of the ToF/RPC detectors

l

Δt v = βc = l / Δt

p = γmv
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Event-plane reconstruction

➠ Event Plane: experimental 
estimation of the RP 

➠ EP orientation in HADES 
calculated from the 
distribution of projectile 
spectators in the FWall; 

➠ Q-vector method based on 
charge-weighted average 
direction of hits; 

➠ Limited spectator hits   
finite resolution of 
reconstructed orientation

→
J.Adamczewski-Musch et al.

Eur.Phys.J.A 59 (2023) 4, 80



 

Jan Orlinski
Faculty of Physics, University of Warsaw Page  of 25 50

Nuclear Physics Seminar, UW
27.02.2025

Centrality in HADES
➠ Impact parameter translated to experimental 

observables via Glauber MC 

➠ In HADES centrality selected based on  

➠ Glauber MC model is applied to convert 

 to  or ;  

➠ All flow results in this talk will be presented for 
the 10-40 % most central collisions;  

➠ The selected centrality must:
• have a well-defined Event Plane
• have high multiplicity of strange hadrons
• provide a large statistical sample

NToF+RPC

NToF+RPC ⟨b⟩ ⟨Apart⟩
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 analysisK±
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t

 < 0.6,  100.0 < p
0

 mass spectrum,  0.2 < y-K

Identification of K±

➠ Mass spectrum from time-of-flight 
measurement shows Gaussian peak 
around  mass 

➠ Background modelled with polynomial of 
3rd degree ( ) or exponential ( ) 

➠ Independent fits in  ,  and  bins 
yield a 3D distribution of  mesons 
 

➠ Signal measurement must be 
sensitive to small variations in 
kaon signal!

K±

K+ K−

pT y0 Δϕ
K+

K+

K−
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➠ Raw reconstructed yields (no efficiency correction): 

•  of  
•  of   

➠ HADES provides a very wide acceptance for both particles

8.6 ⋅ 106 K+

6.7 ⋅ 105 K−
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K−C
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Fourier analysis

➠ The  distribution for given  and  is used to obtain flow coefficients 

➠ For this cell,    and  .

Δϕ pt y0

v1 = − 0.0149 ± 0.0015 v2 = − 0.0122 ± 0.0016

HADES  
Work in progress

−0.71 < y0 < − 0.43
400 < pt [MeV/c] < 500

K+

Centrality 10 - 40 %

±3 %
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0.5− 0 0.5
0

 y
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0

0.2

0.41
 v  [MeV/c] < 600

t
Protons, 500 < p

 < 300    
t

, 200 < p+K  < 400    
t

, 300 < p+K
 < 500    

t
, 400 < p+K  < 600    

t
, 500 < p+K

 < 700    
t

, 600 < p+K  < 800    
t

, 700 < p+K

 distribution1 v+K
Directed flow ( ) of  as function of  v1 K± y0

0.5− 0 0.5
0

 y

0.2−

0

0.2

0.41
 v  [MeV/c] < 600

t
Protons, 500 < p

 < 300    
t

, 100 < p-K
 < 500    
t

, 300 < p-K
 < 700    
t

, 500 < p-K

 distribution1 v-K

K+ K−

• All shown results are corrected for the 
finite EP reconstruction resolution 

• No other efficiency effects considered

• Fast  mesons flow “with” the 
protons, slow  — oppositely…

• Suggests a repulsive  potential?

K+

K+

K+N
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Directed flow ( ) of  as function of v1 K± pT

HADES  
Preliminary
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Preliminary0 200 400 600 800

 [MeV/c]
t

 p

0.2−

0

0.2

0.41
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0

, -1.0 < y+K  < -0.4   
0

, -0.7 < y+K
 < -0.1   

0
, -0.4 < y+K  < 0.1   

0
, -0.1 < y+K

 < 0.4   
0

, 0.1 < y+K
 < 0.7   

0
, 0.4 < y+K

 distribution1 v+K

200 400 600
 [MeV/c]
t

 p

0.2−

0

0.2

0.41
 v  < -0.5  

0
Preliminary protons, -0.7 < y

 < -0.6   
0

, -1.0 < y-K  < -0.2   
0

, -0.6 < y-K
 < 0.2   

0
, -0.2 < y-K  < 0.6   

0
, 0.2 < y-K

 < 1.0   
0

, 0.6 < y-K

 distribution1 v-K

K+ K−

• All shown results are corrected for the 
finite EP reconstruction resolution 

• No other efficiency effects considered
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Elliptic flow ( ) of  as function of  v2 K± y0
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t
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t

, 500 < p-K

 distribution2 v-K

K+ K−

• All shown results are corrected for the 
finite EP reconstruction resolution 

• No other efficiency effects considered

•  exhibits negative , like 
the protons!
K+ v2
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• All shown results are corrected for the 
finite EP reconstruction resolution 

• No other efficiency effects considered
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 analysisΛ





 

Jan Orlinski
Faculty of Physics, University of Warsaw Page  of 35 50

Nuclear Physics Seminar, UW
27.02.2025

Lambda reconstruction

pi- 
 

 Q = − 1

χ2
RK ≤ 200

proton 

 
 

 

Q = + 1

600 < M[MeV] < 1300

p[MeV] < 2500

 candidates 
initial cuts [mm]: 

 
 
 
 
 

 

410 million accepted

Λ

Dv1 ≥ 12
Dv2 ≥ 5
Dvc ≤ 12
D12 ≤ 20

Dvv ≥ 30, DZ
vv ≥ 30

 candidates 
final cuts [mm]: 

 
 
 
 
 

 
 

3.1 million accepted

Λ

Dv1 ≥ 22
Dv2 ≥ 8.5
Dvc ≤ 5.5
D12 ≤ 9

Dvv ≥ 78, DZ
vv ≥ 29

➠ The  baryon is electrically neutral  no direct measurement 
main decay channel:  (BR=64%). 

➠ Invariant mass of daughters = rest mass of mother.

Λ0 ⇒
Λ → pπ−

S/B optimization



Jan Orlinski
Faculty of Physics, University of Warsaw Page  of 36 50

Nuclear Physics Seminar, UW
27.02.2025

Lambda mass fit example

• Signal is reconstructed 
by fitting linear bckg 
and Gaussian signal 

• More sophisticated 
methods of bckg 
estimation can be used 

• So far, the fitting 
method is satisfactory
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Fitting the  phase space…pt : y0
p t

 [M
eV

/c
]

y00
100

1500

300



Jan Orlinski
Faculty of Physics, University of Warsaw Page  of 38 50

Nuclear Physics Seminar, UW
27.02.2025

Lambda  distribution pt : y0
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Fitting the  phase space…pt : y0 : Δϕ
p t

 [M
eV

/c
]

y00
100

1500

300
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Distribution of  coefficientsv1,2

• All shown results are corrected for the finite Event Plane  
reconstruction resolution 

• No other efficiency effects were considered 

   v1 v2
0.4 0.2
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Differential  distributionsv1
• Caution: small horizontal shifts for readability only

• The  of  baryons exhibits only small variations with  (if any),
• Qualitative difference between  mesons and  baryons.

v1 Λ0 pt
K+ Λ
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Differential  distributionsv2
• Caution: small horizontal shifts for readability only

• Negative  of  baryons corresponds with that of the  and protons.v2 Λ0 K+
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Summary
➠ The transverse flow of strange hadrons  and  emitted from Ag+Ag 

collisions at 1.58 GeV/nucleon is being analysed; 

➠ The preliminary maps of  in the momentum phase-space were obtained; 

➠ Steps to the finalization of the results:
• optimization of signal extraction,
• study of the occupancy-related efficiency effects,
• evaluation of systematic uncertainties; 

➠ This may provide new insight into the interaction between these strange 
hadrons and the nuclear matter; 

➠ Published results in this energy range is very limited, with the  of  
never published before!

K± Λ0

v1,2

v1,2 Λ0
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T H A N K  Y O U !

HADES XLVII Collaboration Meeting, 26-30 August 2024, Warsaw
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BACKUP SLIDES:
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Differential  distributionsv1(y0)
Ag+Ag @ 1.58A GeV 
10-20 % centrality

Ag+Ag @ 1.58A GeV 
20-30 % centrality

Proton distributions from 10-40 % centrality
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Differential  distributionsv1(pt)
Ag+Ag @ 1.58A GeV 
10-20 % centrality

Ag+Ag @ 1.58A GeV 
20-30 % centrality

Proton distributions from 10-40 % centrality
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Differential  distributionsv2(y0)
Ag+Ag @ 1.58A GeV 
10-20 % centrality

Ag+Ag @ 1.58A GeV 
20-30 % centrality

Proton distributions from 10-40 % centrality
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Differential  distributionsv2(pt)
Ag+Ag @ 1.58A GeV 
10-20 % centrality

Ag+Ag @ 1.58A GeV 
20-30 % centrality

Proton distributions from 10-40 % centrality


