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Why Are We Interesed
in Molecular Symmetries
in Sub-Atomic Physics ?

• Nuclear symmetries generate unprecedented degeneracies in both
individual-nucleonic and collective-rotational levels: New Issues !

• Thus – Implied totally new spectroscopy rules in subatomic physics

•We found the first experimental confirmation of Td in 152Sm nucleus

• Presence of an unprecedented class of exotic shape-isomeric states

FURTHER CONSEQUENCES for SUBATOMIC PHYSICS

• New highway towards exotic nuclei: Isomers living longer than G-S
• Astrophysics: New magic numbers for the nucleosynthesis
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Our Interests in High-Rank Symmetries – II

• Theory predicts whole families of nuclear shapes in many regions of
the Periodic Table compatible with new, exotic symmetries

• These symmetries may lead to well pronounced potential energy
minima generating unprecedented, new nuclear quantum mechanisms

• For instance: unprecedented degeneracies of nucleonic levels that are
neither equal to (2 𝑗 + 1) nor to 2 (time-up, time-down↔ KRAMERS)

• For instance: exotic (16-fold) degeneracies of 2p-2h excitations

• For instance: unprecedented degeneracies of rotational states

• For instance: unprecedented forms of the nuclear rotational behaviour
- rotational bands without ‘rotational E2-transitions’

• ... and many more
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Part 1-A

Remarks about Our Choice of Theory Approach:

Phenomenological Mean Field
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About Deformed Woods-Saxon Hamiltonian:

Reminding Standard Definitions
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Nucleonic Density - vs. - Nuclear Potential

• The short range of the nuclear forces, comparable to the nucleon
sizes, imply that the nuclear potential quickly vanishes as soon as the
nucleon ‘tries to escape’ from the nuclear interior [vanishing density]

Density
Matter

Potential

a

Space

Space

ρ(r)

V(r)

Vo oR

•A phenomenological [Woods-Saxon]
parameterisation of the potential:

𝑉 (®𝑟;𝑉𝑜, 𝑅, 𝑎) =
𝑉𝑜

1 + exp[distΣ (®𝑟 )/𝑎]

𝑉𝑜 ≈ −50 MeV, 𝑎 ≈ 0.6 fm,

𝑅 ≈ 1.2 𝐴1/3 fm
• Function dist𝚺 (®𝒓 ) gives the shortest
distance between the nuclear surface
and a point in space (see next slides)

• Among ∼3 000 nuclei known today, the great majority are deformed
(∼8 spherical)
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Description of Nuclear Deformation [or Shapes]

• Given nuclear surface, Σ. It can generally be expanded in terms of
the spherical harmonic basis {𝑌𝜆𝜇 (𝜗, 𝜑)}

Given surface Σ

x

y

z

~R = R(ϑ, ϕ)~n

®𝑛 = {cos 𝜑 sin 𝜗, sin 𝜑 sin 𝜗, cos 𝜗}

The lowest rank deformations:

→ 𝛼2𝜇 - quadrupole
→ 𝛼3𝜇 - octupole
→ 𝛼4𝜇 - hexadecapole

• The formal expansion [standard form]:

𝑅(𝜗, 𝜑) = 𝑅𝑜 𝑐({𝛼})
[
1+

∑︁
𝜆𝜇

𝛼𝜆𝜇𝑌𝜆𝜇 (𝜗, 𝜑)
]

= a multipole expansion about the sphere

• Parameters {𝛼𝜆𝜇}, are called deforma-
tions or shape degrees of freedom

• In the case of time-dependent description
e.g., collective vibrations and/or rotations:

𝛼𝜆𝜇 = 𝛼𝜆𝜇 (𝑡)
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WS Mean-Field is a Functional of dist𝚺(®𝒓)

Surface Σ : 𝑅(𝜗, 𝜑) = 𝑅𝑜 𝑐({𝛼})
[
1 +∑𝜆𝜇 𝛼𝜆𝜇𝑌𝜆𝜇 (𝜗, 𝜑)

]
Given surface Σ⇔ distΣ (®𝑟 )

x

y

z

P (x, y, z)

~R = R(ϑ, ϕ)~n
~r

distΣ
(x, y

, z)

®𝑛 = {cos 𝜑 sin 𝜗, sin 𝜑 sin 𝜗, cos 𝜗}

• WS Potential respects automati-
cally the surface-Σ symmetries:

𝑉 (®𝑟;𝑉𝑜, 𝑅, 𝑎) =
𝑉𝑜

1 + exp[distΣ (®𝑟 )/𝑎]

• Auxiliary function
𝑓 (𝜗, 𝜑) ≡

[
®𝑟 − 𝑅(𝜗, 𝜑) ®𝑛(𝜗, 𝜑)

] 2

• Distance function
distΣ (®𝑟 ) ≡ min

{𝜗,𝜑}
𝑓 (𝜗, 𝜑)

Mean-Field Potential: V̂m−f = V̂
WS
cent + V̂

WS
SO + V̂C

Hamiltonian: Ĥm−f = T̂ + V̂m−f

I. Dedes, IFJ Polish Academy of Sciences Exotic Shapes and Symmetries Around Octupole 𝑵 = 136



Introducing Woods-Saxon Hamiltonian
• We use the phenomenological Woods-Saxon Hamiltonian with the so-
called ‘universal’ parameterisation

⇒ fixed set of parameters for thousands of nuclei!

• Central Potential

VWS
cent =

𝑉𝑐

1 + exp [distΣ (®𝑟; 𝑟𝑐)/𝑎𝑐]

• Spin-Orbit Potential

VWS
SO =

2 ℏ𝜆𝑠𝑜
(2𝑚𝑐)2

[( ®∇𝑉WS
SO ) ∧ 𝑝 ] · 𝑠, with 𝑉WS

SO =
𝑉𝑜

1 + exp[distΣ (®𝑟, 𝑟𝑠𝑜)/𝑎𝑠𝑜]

• Isospin distinction (+ ↔ protons) and (− ↔ neutrons)

𝑉𝑐 = 𝑉𝑜

[
1 ± 𝜅𝑐

𝑁 − 𝑍
𝑁 + 𝑍

]
; 𝜆𝑠𝑜 = 𝜆𝑜

[
1 ± 𝜅𝑠𝑜

𝑁 − 𝑍
𝑁 + 𝑍

]
• This potential depends only on two sets of 6 parameters↔Mass Table

{𝑽𝒄 , 𝒓𝒄 , 𝒂𝒄; 𝝀𝒔𝒐 , 𝒓𝒔𝒐 , 𝒂𝒔𝒐}𝝅,𝝂 ⇔ {𝑽𝒐 , 𝜿𝒄 , 𝒓
𝝅,𝝂
𝒄 , 𝒂𝝅,𝝂𝒄 ; 𝝀𝒐 , 𝜿𝒔𝒐 , 𝒓𝝅,𝝂𝒔𝒐 , 𝒂

𝝅,𝝂
𝒔𝒐 }



About Choices between Mean-Field Approaches
• Our group was investing in phenomenological Woods-Saxon (WS)
and microscopic Skyrme Hartree-Fock-Bogolyubov (HFB) approaches

• For this project we select the phenomenological WS-type description

• This will allow us to profit from our earlier applications of inverse
problem theory – and resulting stabilisation of modelling-predictions∗)

——
∗) Dudek, Szpak, Porquet, Molique, Rybak and Fornal,

J. Phys. G: Nucl. Part. Phys. 37 (2010) 064031
∗) Dudek, Rybak, Szpak, Porquet, Molique and Fornal,

Int. J. Mod. Phys. E19 (2010) 652
∗) Dedes and Dudek,

Act. Phys. Pol. B Proc. Supp., Vol. 10, No. 1 (2017)
∗) Dedes and Dudek,

Physica Scripta, Vol.93, No. 4 (2018)
∗) Dedes and Dudek,

Physical Review C 99 (2019) 054310
∗) “Stochastic approach to the problem of predictive power in the theoretical modelling of the nuclear mean-field”,

I. Dedes, PhD Thesis (2017), http://www.theses.fr/2017STRAE017/document
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Part 1-B
Our Approach to Hamiltonian Optimisation

Inverse Problem Theory
and

Monte-Carlo Simulations

“Predictive Power of Our Hamiltonian”
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What Does It Mean To Predict?

• Any calculation performed with any given model (theory) before
experimental result is known can be called a prediction

•Only after experimental verification we can declare that the prediction
was good or poor

• A prediction has always a predictive power. However:

What does it mean to have good predictive power?
What are the criteria of the quality of the prediction?

• Introducing quality criteria, we introduce a subjective judgment, since
being good for someone may not be even satisfactory for someone else

⇒ Conclusion:

One needs to introduce a framework which will help to compare the
model prediction capacities
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Predictive Power of Theories: Stochastic Approach

This part of our research project is formulated within

Stochastic Theory of Predictive Power∗)

• Given theory T, of a quantum phenomenon P, employing observables→
Operators : F̂1, F̂2, . . . F̂𝒑

• Observables will be characterised not only by related eigenvalues i.e. { 𝒇 𝒋 }
[

F̂1 → { 𝒇1}, F̂2 → { 𝒇2}, . . . F̂𝒑 → { 𝒇𝒑}
]

but also by distributions of probability of their validity - or applicability
P1 = P1( 𝒇1), P2 = P2( 𝒇2), . . . P𝒑 = P1( 𝒇𝒑)

• These distributions are obtained using stochastic methods on the basis of
all the uncertainties known-, or possible to estimate today

∗) Introduced in “Open Problems in Nuclear Theory”, J. Dudek and collaborators,
J. Phys. G: Nucl. Part. Phys. 37 (2010) 064031
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Direct and Inverse Problems in Quantum Theories
• Given parameters {𝑝} → The Schrödinger equation produces ‘data’:

𝑯̂( 𝒑)𝝍 = 𝑬𝒑𝝍 → {𝑬𝒑, 𝝍( 𝒑)} ↔ Ô𝑯 ( 𝒑) = 𝒅𝒕𝒉 ← Direct Problem

• To find the optimal parameters we must invert the above relation:

𝒑𝒐𝒑𝒕 = Ô−1
𝑯 (𝒅

𝒆𝒙𝒑
) ← Inverse Problem

• In many-body theories the existence of operator Ô−1
H is doubtful, in

fact no mathematical methods of such a construction are known

If ÔH has no inverse we say that inverse problem is ill-posed

In many-body Hamiltonian case this issue remains unsolved:
Instead of solving the Inverse Problem→ “one minimises 𝝌2 ”
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H is doubtful, in

fact no mathematical methods of such a construction are known
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𝑯̂( 𝒑)𝝍 = 𝑬𝒑𝝍 → {𝑬𝒑, 𝝍( 𝒑)} ↔ Ô𝑯 ( 𝒑) = 𝒅𝒕𝒉 ← Direct Problem

• To find the optimal parameters we must invert the above relation:

𝒑𝒐𝒑𝒕 = Ô−1
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Inverse Problem in Linearised Representation
• Definition of 𝝌2 in the present context

𝝌2( 𝒑) =
∑𝒏𝒅

𝒋=1[𝒆
exp
𝒋 − 𝒆th

𝒋 ( 𝒑)]
2

↓ Taylor linearisation

𝝏𝝌2

𝝏𝒑𝒊
= 0 → (𝑱𝑻 𝑱) · 𝒑 = 𝑱𝑻 𝒃 ↔ 𝑱𝑻 𝑱

𝒅 𝒇
= A,













𝑱𝒋𝒌=
©

­

«

𝝏𝒆th
𝒋

𝝏𝒑𝒌

ª

®

¬













𝑱 being Jacobian matrix

• Applied Mathematics: From the Data D, we extract information about the
optimal parameters P, by inverting matrix A:

Direct Problem: A · P = D → Inverse Problem: P = A−1
· D

• In the presence of parametric correlations, say 𝒑𝒌 = 𝒇 ( 𝒑𝒌′), two columns
of A are linearly dependent

• If this happens→ A-matrix becomes singular [Ill-Posed Problem]

Ill-Posed: Correlation between parameters and the data is lost!
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Sources of Uncertainties in Theoretical Predictions

We have different uncertainty sources to take into
account when parameter adjusting and predicting

1. Experimental Errors
2. Parametric Correlations

3. Incomplete Theories

Model parameters are not just numbers!

They are represented by probability
uncertainty distributions
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Linear Parametric Correlations
and

Pearson Correlation Matrix
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Pearson Correlation Matrix {𝒓 𝒊 𝒋 }

• The Pearson Correlation matrix informs us about the possible linear
dependence existing between two parameters, 𝑝𝑖 and 𝑝 𝑗 :

• Definition

𝑟𝑖 𝑗 =

𝑛∑
𝑘=1
(𝑝𝑖,𝑘 − 𝑝𝑖) (𝑝 𝑗 ,𝑘 − 𝑝 𝑗)√︂

𝑛∑
𝑘=1
(𝑝𝑖,𝑘 − 𝑝𝑖)2

√︂
𝑛∑

𝑘=1
(𝑝 𝑗 ,𝑘 − 𝑝 𝑗)2

where
𝑘 = 1, ... 𝑛, with 𝑛 is the number of elements for each 𝑝𝑖 and 𝑝 𝑗

𝑝𝑖 =
1
𝑛

𝑛∑
𝑘=1

𝑝𝑖,𝑘 is the arithmetic mean value

• Coefficient range: 𝑟𝑖 𝑗 ∈ [−1, +1]
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Parametric Correlations, General Illustrations

• From Wikipedia: two-dimensional (𝑥, 𝑦) distributions of data-points
with their corresponding values of Pearson Coefficient 𝑟𝑖 𝑗 .

• Observation: The bottom row results show strongly non-linear
correlated distributions which give 𝒓𝒊 𝒋 ≈ 0
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Parametric Correlations: Monte Carlo Approach

• Parametric correlations can be studied using Monte Carlo Simulations

Given space of data {𝑑1, 𝑑2, . . . 𝑑n} with uncertainties, 𝑑 ± 𝜎
{𝜎1, 𝜎2, . . . 𝜎n}

With a random-number generator we define what is called ‘Gaussian
noise distribution’ around each {𝑑𝑖} 𝑗
We fit the parameter sets {𝑝1, 𝑝2, . . . 𝑝𝑚} 𝑗 great number of times,
N𝑀𝐶 ∼ 105, i.e. for 𝑗 = 1, 2, . . . N𝑀𝐶

From 𝑚-tuplets of obtained parameters, {𝑝1, 𝑝2, . . . 𝑝𝑚}, we construct
the tables and projection plots

For each 𝑚-tuplet, we can calculate the single particle energies for
different nuclei and construct the occurrence histograms for each
energy state

•We consider the single particle energies of the ‘experimentally known’
doubly-magic spherical-nuclei as the space of data {𝒅𝒊} 𝒋:

16
8O8, 40

20Ca20, 48
20Ca28, 56

28Ni28, 90
40Zr50, 132

50Sn82, 146
64Gd82, 208

82Pb126
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Parametric Correlations in WS Hamiltonian
• Reminder about WS-parameters: {𝑉𝑜, 𝜅𝑐 , 𝑟 𝜋,𝜈𝑐 , 𝑎

𝜋,𝜈
𝑐 ;𝜆𝑜, 𝜅𝑠𝑜, 𝑟 𝜋,𝜈𝑠𝑜 , 𝑎

𝜋,𝜈
𝑠𝑜 }
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• These results show that the central potential depth and central potential radius
parameters are correlated. We have (𝑟𝑖 𝑗 ≈ 1). We show that: 𝑉𝑐 × 𝑟2

𝑐 ≈ const.

• Parameters 𝑉𝑐
0 vs. 𝑟𝑐𝜋 show approximately parabolic correlation
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Parametric Correlations in WS Hamiltonian
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• These results show that the central potential depth and central potential radius
parameters are correlated. We have (𝑟𝑖 𝑗 ≈ 1). We show that: 𝑉𝑐 × 𝑟2

𝑐 ≈ const.
• Parameters 𝑉𝑐

0 vs. 𝑟𝑐𝜋 show approximately parabolic correlation
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Parametric Correlation Analysis: Observations

Central Potential Parameters

• Our analysis shows a quadratic (‘parabolic’) dependence between
central depth and central radius

•We may fit the expression 𝒓𝒄 = 𝜶 · 𝑽 2
𝒄 + 𝜷 · 𝑽𝒄 + 𝜸
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Parametric Correlations in WS Hamiltonian
• Reminder about WS-parameters: {𝑉𝑜, 𝜅𝑐 , 𝑟 𝜋,𝜈𝑐 , 𝑎

𝜋,𝜈
𝑐 ;𝜆𝑜, 𝜅𝑠𝑜, 𝑟 𝜋,𝜈𝑠𝑜 , 𝑎

𝜋,𝜈
𝑠𝑜 }

S-O Potential Parameter Correlations
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• Parameters 𝜆𝑠𝑜0 vs. 𝑟𝑠𝑜𝜋 :
present ‘double valued approximate linear correlations’

We call them compact and non-compact spin-orbit radius parametrisations
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Parametric Correlation Analysis: Observations

Spin-Orbit Potential Parameters

• For spin-orbit parameters we have ‘double-bubble’ structure→ i.e.:
no “usual” function of the type 𝑦 = 𝑓 (𝑥) can be defined

• Since we can clearly separate the distributions leading to the
“double bubbles’, we select two separate solutions corresponding to
the two maxima of distributions. The results are given in the Table:

Type/name 𝑟𝑠𝑜𝜈 [fm] 𝑟𝑠𝑜𝜋 [fm]

compact 0.89 0.83
non-compact 1.19 1.22
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Parametric Correlation Elimination

Before Parametric Correlation Elimination:

12 independent parameters

{𝑽𝒐, 𝜿𝒄, 𝒓
𝝅,𝝂
𝒄 , 𝒂𝝅,𝝂𝒄 ; 𝝀𝒐, 𝜿𝒔𝒐, 𝒓

𝝅,𝝂
𝒔𝒐 , 𝒂

𝝅,𝝂
𝒔𝒐 }

After Parametric Correlation Elimination:

6 independent parameters

{𝑽𝒐, 𝜿𝒄, 𝒂
𝝅,𝝂
𝒄 ; 𝝀𝒐, 𝜿𝒔𝒐}
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New Universal WS Hamiltonian Parametrisation

•We chose the compact solution since it gives better comparison with
experiment as compared to the non-compact one

𝑉𝑐
0 (MeV) 𝜅𝑐 𝑎𝑐𝜋,𝜈 (fm) 𝜆𝑠𝑜0 𝜅𝑠𝑜

Mean values −50.225 0.624 0.594 (𝜋) 26.210 −0.683
0.572 (𝜈)

Standard error 0.142 0.013 0.010 (𝜋) 0.513 0.139
0.011 (𝜈)

• The resulting dependent parameters are
𝑟𝑐𝜋 = 1.278 fm, 𝑟𝑐𝜈 = 1.265 fm,

and
𝑟𝑠𝑜𝜋 = 0.830 fm, 𝑟𝑠𝑜𝜈 = 0.890 fm.

• The spin-orbit diffusivity parameters, 𝑎𝑠𝑜𝜋 = 𝑎𝑠𝑜𝜈 = 0.700 fm.
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Final Comparison: Compact Solution – Neutrons
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• Top: Full parametric freedom, Bottom: Full parametric correlation elimination
• Please observe significantly narrower peaks after parametric correlation removal
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Final Comparison: Compact Solution – Protons
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Part 2

Selected Molecular Symmetries in Atomic Nuclei

Example: So-called High-Rank∗) Symmetries
Tetrahedral Td and Octahedral Oh

∗) The only ones with 4D irreducible spinor representations – 4-fold nucleonic degeneracies
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Tetrahedral Symmetry: Spherical-Harmonic Basis

Only special combinations of spherical harmonics may form a basis
for surfaces with tetrahedral symmetry and only odd-order except 5

Three Lowest Order Solutions: Rank↔Multipolarity 𝜆

𝝀 = 3 : 𝒕1 ≡ 𝜶3,±2

𝝀 = 5 : no solution possible

𝝀 = 7 : 𝒕2 ≡ 𝜶7,±2 and 𝜶7,±6 = −
√︃

11
13 · 𝜶7,±2

𝝀 = 9 : 𝒕3 ≡ 𝜶9,±2 and 𝜶9,±6 = +
√︃

28
198 · 𝜶9,±2

𝑅(𝜗, 𝜑) = 𝑅𝑜 𝑐({𝛼})
[
1 +∑𝜆𝜇 𝛼𝜆𝜇𝑌𝜆𝜇 (𝜗, 𝜑)

]
• Problem presented in detail in:
J. Dudek, J. Dobaczewski, N. Dubray, A. Góźdź, V. Pangon and N. Schunck,
Int. J. Mod. Phys. E16, 516 (2007) [516-532].
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Nuclear Tetrahedral Shapes – 3D Examples

Illustrations below show the tetrahedral-symmetric surfaces at three
increasing values of rank 𝜆 = 3 deformations 𝛼32: 0.1, 0.2 and 0.3

𝛼32 ≡ 𝑡1 = 0.1 𝛼32 ≡ 𝑡1 = 0.2 𝛼32 ≡ 𝑡1 = 0.3

Observations:
There are infinitely many tetrahedral-symmetric surfaces
Nuclear ‘pyramids’ do not resemble pyramids very much!
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OBSERVATION:

Tetrahedral symmetry group, Td,
is a sub-group of the octahedral one, Oh
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Octahedral Symmetry: Spherical-Harmonic Basis

Only special combinations of spherical harmonics may form a basis
for surfaces with octahedral symmetry and only in even-orders 𝜆 ≥ 4

Three Lowest Order Solutions: Rank↔Multipolarity 𝜆

𝝀 = 4 : 𝒐1 ≡ 𝜶40 and 𝜶4,±4 = −
√

5
14 · 𝜶40

𝝀 = 6 : 𝒐2 ≡ 𝜶60 and 𝜶6,±4 = −
√

7
2 · 𝜶60

𝝀 = 8 : 𝒐3 ≡ 𝜶80 and 𝜶8,±4 =
√︃

28
198 · 𝜶80

and 𝜶8,±8 =
√︃

65
198 · 𝜶80

𝑅(𝜗, 𝜑) = 𝑅𝑜 𝑐({𝛼})
[
1 +∑𝜆𝜇 𝛼𝜆𝜇𝑌𝜆𝜇 (𝜗, 𝜑)

]
• Problem presented in detail in:
J. Dudek, J. Dobaczewski, N. Dubray, A. Góźdź, V. Pangon and N. Schunck,
Int. J. Mod. Phys. E16, 516 (2007) [516-532].
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Nuclear Octahedral Shapes – 3D Examples

Illustrations below show the octahedral-symmetric surfaces at three
increasing values of rank 𝜆 = 4 deformations 𝑜4: 0.1, 0.2 and 0.3

𝑜1 = 0.1 𝑜1 = 0.2 𝑜1 = 0.3

Observations:
There are infinitely many octahedral-symmetric surfaces
Nuclear ‘diamonds’ do not resemble diamonds very much!
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Mean Field Theory: Tetrahedral Gaps

Double group 𝑇𝐷
𝑑

has two 2-dimensional - and one 4-dimensional
irreducible representations: Three distinct families of nucleon levels
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82

90
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100
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{09}[5,1,4] 9/2
{07}[4,3,1] 1/2
{09}[4,2,2] 3/2
{15}[4,0,4] 7/2
{10}[4,0,4] 7/2
{13}[4,1,3] 5/2
{16}[4,0,2] 3/2
{08}[4,4,0] 1/2
{09}[4,0,0] 1/2
{11}[5,0,5] 11/2
{08}[5,2,1] 1/2
{16}[5,0,5] 11/2
{09}[5,2,3] 7/2
{12}[5,1,4] 9/2
{04}[4,4,0] 1/2
{06}[6,3,3] 7/2
{08}[5,0,3] 7/2
{10}[6,2,4] 9/2
{06}[6,1,5] 11/2
{08}[5,2,3] 5/2
{20}[5,0,5] 9/2
{07}[5,0,5] 9/2
{19}[5,1,4] 7/2
{07}[5,4,1] 3/2

{06}[3,1,2] 3/2
{10}[3,1,2] 5/2

{03}[3,1,0] 1/2
{04}[3,1,0] 1/2
{06}[3,0,1] 1/2
{06}[4,0,4] 7/2
{06}[4,0,4] 7/2

{04}[5,0,5] 11/2
{05}[4,3,1] 1/2

{05}[6,1,5] 11/2

{10}[3,1,2] 3/2
{04}[5,0,3] 7/2
{03}[4,1,3] 7/2
{04}[4,1,3] 7/2
{04}[3,0,1] 1/2
{05}[4,0,0] 1/2
{06}[5,4,1] 1/2

{11}[5,0,5] 11/2
{07}[4,2,2] 5/2
{07}[4,1,3] 7/2
{05}[6,1,5] 9/2
{06}[5,0,5] 9/2
{06}[4,2,0] 1/2
{04}[4,1,1] 3/2

226Th 136 90

Full lines ↔ 4-dimensional irreducible representations - marked with double
Nilsson labels. Observe huge gaps at 𝑍 = 64, 70, 90 − 94, 100.
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Mean Field Theory: Tetrahedral Gaps

Double group 𝑇𝐷
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{11}[6,0,6] 11/2
{04}[6,4,0] 1/2
{07}[6,0,2] 5/2
{03}[6,6,0] 1/2
{05}[6,5,1] 3/2
{13}[6,2,4] 7/2

{05}[4,1,1] 3/2

{03}[5,0,3] 5/2
{03}[5,0,3] 5/2

{06}[6,0,6] 13/2
{02}[3,0,1] 3/2
{02}[4,1,3] 5/2

{03}[5,4,1] 1/2
{04}[5,1,2] 5/2

{05}[7,2,5] 11/2
{04}[5,3,0] 1/2
{04}[4,1,3] 5/2

{04}[7,1,6] 13/2
{06}[6,2,4] 9/2
{03}[5,0,1] 3/2
{03}[5,0,1] 3/2
{08}[5,1,4] 9/2
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{04}[5,0,5] 9/2
{06}[5,2,3] 7/2
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{06}[6,5,1] 1/2
{04}[5,3,2] 5/2
{03}[5,2,1] 3/2
{02}[5,2,1] 3/2

{04}[6,0,6] 11/2

226Th 136 90

Full lines ↔ 4-dimensional irreducible representations - marked with double
Nilsson labels. Observe huge gaps at 𝑁 = 112, 136, 142.
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Symmetries Are the Factors
Determining Stability∗) of Atomic Nuclei

Nuclear mean field theory and group representation theory
which are used in this research belong to the most powerful

tools of nuclear structure theory arsenal

∗) ... by imposing hindrance mechanisms
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Possible Measurable Signs
of

Nuclear Tetrahedral Symmetry
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Quadrupole Moments vs. Pure Octupole Shapes

• Nuclear surface Σ is defined in terms of multipole deformations:

Σ : 𝑅(𝜗, 𝜑) = 𝑅0
[
1 +∑𝜆

∑
𝜇 𝛼𝜆𝜇 𝑌𝜆𝜇 (𝜗, 𝜑)

]
• Given uniform density 𝜌Σ (®𝑟 ) defined using the surface Σ

𝜌Σ (®𝑟 ) =
{
𝜌0 : ®𝑟 ∈ Σ

0 : ®𝑟 ∉ Σ

• Express the multipole moments as usual by

𝑄𝜆𝜇 =
∫
𝜌Σ (®𝑟 ) 𝑟 𝜆𝑌𝜆𝜇 𝑑3®𝑟

•We can calculate the quadrupole moments as functions of 𝛼3𝜇

One can demonstrate that among 𝝀 = 3 (octupole) deformations
only 𝜶32 leads to 𝑸2 ≡ 0 and thus 𝑩(𝑬2) = 0!
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Quadrupole Moments vs. Pure Octupole Shapes

Indeed, for microscopically calculated quadrupole moments (W.S.)

𝑄20(𝛼3𝜇) =
∫

Ψ∗𝑊𝑆 (𝜏)𝑄̂20Ψ𝑊𝑆 (𝜏)𝑑𝜏

Observe that 𝑄20(𝛼32) vanishes identically at Td-symmetric shapes
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The Notion of Isomeric Bands

Similarly one demonstrates that tetrahedral shapes induce B(E1)=0

One shows that the analogous rules apply for octahedral symmetry

Once those symmetries are present one may expect the presence of
numerous isomers since B(E2) and B(E1) at the exact tetrahedral
and/or octahedral symmetry limits – vanish!

As the result, one expects series of long living (isomeric) states
with unprecedented parabolic energy-spin relation

Isomers at: 𝑬𝑰 ∝ 𝑰(𝑰 + 1) ← Isomeric Bands
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Rotating High-Rank Symmetric Nuclei
Seen Through Group-Representation Theory

[Symmetry Properties of Quantum Rotors]
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Reminders: Group and Point Group Theories

• Consider a point-group symmetry characterised by group 𝐺. The SO(3)-
group representation of rotor states, 𝐷 (𝐼 𝜋 ) , with given 𝐼 𝜋 , can be decomposed
in terms of irreducible representations 𝐷𝑖 of the concerned point-group G:

𝐷 (𝐼 𝜋 ) =
𝑀∑︁
𝑖=1

𝑎
(𝐼 𝜋 )
𝑖

𝐷𝑖 ,

where the so-called multiplicity coefficients, 𝑎 (𝐼 𝜋 )
𝑖

, satisfy ∗)

𝑎
(𝐼 𝜋 )
𝑖

=
1
𝑁𝐺

∑︁
𝑅∈𝐺

𝜒(𝐼 𝜋 ) (𝑅)𝜒𝑖 (𝑅) =
1
𝑁𝐺

𝑀∑︁
𝛼=1

𝑛𝛼𝜒(𝐼 𝜋 ) (𝑔𝛼)𝜒𝑖 (𝑔𝛼)

→ 𝜒(𝐼 𝜋) - characters of the reducible representation 𝐷 (𝐼 𝜋) of the SO(3)-group;
→ 𝜒𝑖 - characters of the irreducible representation 𝐷𝑖 of a point group;
→ 𝑁𝐺 - order of the group 𝐺;
→ 𝑔 - group element;
→ 𝑛𝛼 - the number of elements in the class 𝛼, whose representative element is 𝑔𝛼.
——
∗) M. Hamermesh, Group Theory and Its Application to Physical Problems, Addison-Wesley Publishing Company, Inc., 1962
∗) Tagami, Shimizu, Dudek, Phys. Rev. C87, 054306 (2013), DOI: https://doi.org/10.1103/PhysRevC.87.054306
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Example: Tetrahedral Td-Group

• Tetrahedral group has 5 irreducible representations, and 5 classes

• The representative elements {𝑔} are: 𝐸 , 𝐶2 (= 𝑆2
4), 𝐶3, 𝜎𝑑 , 𝑆4

• The characters of irreducible representations of 𝑇𝑑 are listed below

𝑇𝑑 𝐸 𝐶3 (8) 𝐶2 (3) 𝜎𝑑 (2) 𝑆4 (6)

𝐴1 1 1 1 1 1
𝐴2 1 1 1 −1 −1
𝐸 2 −1 2 0 0
𝐹1 3 0 −1 −1 1
𝐹2 3 0 −1 1 −1

•The characters 𝜒(𝐼 𝜋 ) (𝑔𝛼) for the SO(3) representations are as follows:

𝝌 (𝑰𝝅) (𝑬) = 2𝑰 + 1, 𝝌 (𝑰𝝅) (𝑪𝒏 ) =
𝑰
∑︁

𝑲=−𝑰

𝒆
2𝝅𝑲
𝒏 𝒊 , ⇒

𝝌 (𝑰𝝅) (𝝈𝒅 ) = 𝝅 × 𝝌 (𝑰𝝅) (𝑪2) , 𝝌 (𝑰𝝅) (𝑺4) = 𝝅 × 𝝌 (𝑰𝝅) (𝑪4)
•Multiplicity coefficients can be calculated in an elementary fashion

𝒂 (𝑰𝝅)𝒊 =
1
𝑵𝑮

∑︁

𝒈∈𝑮

𝝌 (𝑰𝝅) (𝒈)𝝌𝒊 (𝒈) =
1
𝑵𝑮

𝑴
∑︁

𝜶=1
𝒏𝜶𝝌 (𝑰𝝅) (𝒈𝜶 )𝝌𝒊 (𝒈𝜶 );
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Resulting Prediction of the Structure of Td-Bands

• The number of states 𝑎 (𝐼 𝜋 )
𝑖

within five irreducible representations. If
𝑎
(𝐼 𝜋 )
𝑖

= 0 → states not allowed; 𝑎 (𝐼 𝜋 )
𝑖

= 2 → doubly degenerate, etc.
𝐼+ 0+ 1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10+

𝐴1 1 0 0 0 1 0 1 0 1 1 1
𝐴2 0 0 0 1 0 0 1 1 0 1 1
𝐸 0 0 1 0 1 1 1 1 2 1 2

𝐹1 (𝑇1 ) 0 1 0 1 1 2 1 2 2 3 2
𝐹2 (𝑇2 ) 0 0 1 1 1 1 2 2 2 2 3

𝐼− 0− 1− 2− 3− 4− 5− 6− 7− 8− 9− 10−

𝐴1 0 0 0 1 0 0 1 1 0 1 1
𝐴2 1 0 0 0 1 0 1 0 1 1 1
𝐸 0 0 1 0 1 1 1 1 2 1 2
𝐹1 0 0 1 1 1 1 2 2 2 2 3
𝐹2 0 1 0 1 1 2 1 2 2 3 2

• In this way we find the spin-parity sequence for 𝐴1-representation

A1 : 0+, 3− , 4+, 6+, 6− , 7− , 8+, 9+, 9− , 10+, 10− , 11− , 2 × 12+, 12− , · · ·

• This is the group-theory prediction of the spin-parity structure of the tetrahedral g.s.b.
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Tetrahedral Bands Are Not Like the Others!

As we have shown using the methods of the point-group
representation theory that, for instance,

rotational bands based on 0+ “Td ground-state” have the structure:

A1 : 0+, 3− , 4+, 6+, 6− , 7− , 8+, 9+, 9− , 10+, 10− , 11− , 2 × 12+, 12− , · · ·

and NOT
𝑰𝝅 : 0+ , 2+ , 4+ , 6+ , 8+ , 10+ , 12+ , · · ·

Similarly there are no analogies of the “octupole bands”

𝑰𝝅 : 3− , 5− , 7− , 9− , 11− , 13− , 15− , · · ·
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Quantum Rotors: Tetrahedral vs. Octahedral

• The tetrahedral Td symmetry group has 5 irreducible representations
• The ground-state 𝐼 𝜋 = 0+ belongs to 𝐴1 representation given by:

A1 : 0+, 3− , 4+, (6+, 6− )︸    ︷︷    ︸
doublet

, 7− , 8+, (9+, 9− )︸    ︷︷    ︸
doublet

, (10+, 10− )︸       ︷︷       ︸
doublet

, 11− , 2 × 12+, 12−︸           ︷︷           ︸
triplet

, · · ·

︸                                                                                                                ︷︷                                                                                                                ︸
Forming a common parabola

• There are no states with spins 𝐼 = 1, 2 and 5. We have parity doublets:
𝐼 = 6, 9, 10 . . ., at energies: 𝐸6− ≈ 𝐸6+ , 𝐸9− ≈ 𝐸9+ , etc.

• One shows the analogue structures for the octahedral Oh symmetry
𝐴1𝑔 : 0+, 4+, 6+, 8+, 9+, 10+, . . . , 𝐼 𝜋 = 𝐼+︸                                                        ︷︷                                                        ︸

Forming a common parabola

𝐴2𝑢 : 3− , 6− , 7− , 9− , 10− , 11− , . . . , 𝐼 𝜋 = 𝐼−︸                                                           ︷︷                                                           ︸
Forming another (common) parabola
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Quantum Rotors: Tetrahedral vs. Octahedral

• The tetrahedral Td symmetry group has 5 irreducible representations
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Experimental Data Selection for Td

About criteria for the experimental data search

• Central condition followed: Nuclear states with exact high-rank sym-
metries produce neither dipole-, nor quadrupole moments

• Such states neither emit any collective/strong E1/E2 transitions nor
can be fed by such transitions→ focus on the nuclear processes

• Therefore we decided to focus first of all on the nuclei which can be
populated with a big number of nuclear reactions since we may expect
that - in such nuclei - the states sought exist in the literature

• We had verified that the nucleus 152Sm can be produced by about
25 nuclear reactions, whereas surrounding nuclei can be produced typ-
ically with about a dozen but usually much fewer reactions only

• Energy-wise – tetrahedral bands form regular sequences

𝑬𝑰 ∝ 𝑨𝑰2
+ 𝑩𝑰 + 𝑪
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Announcement of the Discovery – Part I

PHYSICAL REVIEW C VOLUME 97, 021302(R) FEBRUARY 2018

Spectroscopic criteria for identification of nuclear tetrahedral and
octahedral symmetries: Illustration on a rare earth nucleus

J. Dudek, D. Curien, I. Dedes, K. Mazurek, S. Tagami, Y. R. Shimizu and T. Bhattacharjee

(Received 8 June 2017)

We formulate criteria for identification of the nuclear tetrahedral and octahedral symmetries and illustrate for
the first time their possible realization in a rare earth nucleus 152Sm. We use realistic nuclear mean-field
theory calculations with the phenomenological macroscopic-microscopic method, the Gogny-Hartree-Fock-
Bogoliubov approach, and general point-group theory considerations to guide the experimental identification
method as illustrated on published experimental data. Following group theory the examined symmetries imply
the existence of exotic rotational bands on whose properties the spectroscopic identification criteria are based.
These bands may contain simultaneously states of even and odd spins, of both parities and parity doublets
at well-defined spins. In the exact-symmetry limit those bands involve no E2 transitions. We show that
coexistence of tetrahedral and octahedral deformations is essential when calculating the corresponding energy
minima and surrounding barriers, and that it has a characteristic impact on the rotational bands. The symmetries
in question imply the existence of long-lived shape isomers and, possibly, new waiting point nuclei-impacting
the nucleosynthesis processes in astrophysics – and an existence of 16-fold degenerate particle-hole excitations.
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Perfect Parabolas Represent Experimental Results
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Experimental Results [Td -vs.-Oh]

Symmetry Hypotheses:

Tetrahedral: Td

Octahedral: Oh

A1 → r.m.s.=80.5 keV

A1g → r.m.s.=1.6 keV
A2u → r.m.s.=7.5 keV
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• Sequences represent coexistence between tetrahedral and octahedral symmetries.

Curves represent the parabolic fit and are not meant to guide the eye.
This is the first evidence of Td (dashed) and Oh based on the experimental data
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FROM: Spectroscopic criteria for identification of nuclear
tetrahedral and octahedral symmetries: Illustration on a rare earth nucleus

J. Dudek et al., PHYSICAL REVIEW C 97, 021302(R) (2018)
[DOI: https://doi.org/10.1103/PhysRevC.97.021302]
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Part 3

About Exotic Shape-Instabilities in Actinides
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PHYSICAL REVIEW C VOLUME 49, NUMBER 3 MARCH 1994

Deformed atomic nuclei with degeneracies of the nucleonic levels higher than 2

Xunjun Li and Jerzy Dudek
Centre de Recherches Nucléaires, Institut National de Physique Nucléaire et de Physique des Particules du Centre National de la

Recherche Scientifique, Université Louis Pasteur,
Boite Postale 20, F-67037 Strasbourg Cedex2, France

(Received 19 October 1993)

As it is well known, the single-nucleonic levels in a nucleus manifest
either the Kramers degeneracy 𝑑 = 2 or, if a nucleus is spherical, a trivial
“magnetic” degeneracy 𝑑 = 2 𝑗 + 1. It will be shown using the results of
the realistic total nuclear energy calculations that a possibility of fourfold
degenerate nucleonic levels exists in a number of 𝑁 ∼ 136 isotones due
to their high intrinsic symmetry. Those exotic states are predicted to be
isomeric; they lie only a few hundreds of keV above the ground state.
Other possible nuclear regions where the same mechanism may take place
are indicated.
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30 Years Back: Original vs. Newest Forms

• Left: Single particle levels from Phys. Rev. C49 R1250 (1994);
Right: Modern version of parameters, so-called “universal-compact”
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82

• Observe correspondence between the tetrahedral magic-number
predictions: 𝑁𝜈

𝑡 = 90, 94, 112, 136, 142 → historical vs. modern
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30 Years Back: Original vs. Newest Forms

• Left: Single particle levels from Phys. Rev. C49 R1250 (1994);
Right: Modern version of parameters, so-called “universal-compact”
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• Observe correspondence between the tetrahedral magic-number
predictions: 𝑁 𝜋

𝑡 = 56, 58, 70, 90 → historical vs. modern
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30 Years Back: Original vs. Newest Forms

• The first traces of the octahedral symmetry – although the authors did not
address it at that time: “unwanted effect of hexadecapole deformation”
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•What is presented here as unwanted effect of hexadecapole deformation is in fact the “very
much wanted” effect of the octahedral symmetry:

𝜶40 → 𝒐1 ≡ {𝜶40; 𝜶4,±4 =
√︁

5/14 · 𝜶40 } ,

and in fact its effect lowers the energy considerably
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Path to Exotic Symmetries: Begin with Spherical 208Pb
• Consider 208Pb nucleus, doubly magic,

among the most stable, spherical, ...

• The first excited state is an 𝐼 𝜋 = 3−,
traditionally associated with the pear-shape

𝑌𝜆=3,𝜇=0-oscillations

• Other negative parity octupole modes are
generated by multipolarities 𝑌𝜆=3,𝜇≠0

Multipolarity 𝛼𝜆=3,𝜇 Point Group

𝛼30 C∞v
𝛼31 C2v
𝛼32 Td
𝛼33 D3h

• One can demonstrate that these are the
corresponding Point Groups

208Pb Level Scheme from NNDC;
3− state traditionally associated with
the octupole (pear-shape) oscillations
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What structural mechanisms
are expected to bring the 𝑰𝝅 = 3− vibrations

to the lowest position in the spectrum?

More generally,
what are the shell mechanisms responsible of
lowering the negative parity collective states?
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We Begin With the Octupole Shell-Structures

•We will overview the 𝜆 = 3 deformation shell effects in the Pb region
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• For Pb-nuclei, thus at fixed 𝑍 = 82, the variation in octupole effects
originates from the evolution of the neutron shell structure – right plot

•Octupole shell gap opening at 𝑁 = 136: repulsive interaction between
the 2𝑔9/2 (𝑁shell = 6) and the intruder 1 𝑗15/2 (𝑁shell = 7)
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Shell Structures at 𝑵 = 136→ 𝜶30, 𝜶31, 𝜶32, 𝜶33
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We conclude that 𝑵 = 136 plays the role
of a special octupole magic-number

and this – for all the 4 octupole multipolarities

Consequences in terms of the nuclear structure∗)

—-
∗) I. Hamamoto, B. Mottelson, H. Xie, and X. Z. Zhang,

Z. Phys. D - Atoms, Molecules and Clusters 21, 163-175 (1991)
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We conclude that 𝑵 = 136 plays the role
of a special octupole magic-number

and this – for all the 4 octupole multipolarities

Consequences in terms of the nuclear structure∗)

—-
∗) I. Hamamoto, B. Mottelson, H. Xie, and X. Z. Zhang,

Z. Phys. D - Atoms, Molecules and Clusters 21, 163-175 (1991)
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Evolution of Pear-Shape Instabilities: 208Pb

• Projection on the (𝛼20, 𝛼30)-plane minimised over (𝛼22, 𝛼40) for 208Pb

208Pb
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Evolution of Pear-Shape Instabilities: 210Pb

• Projection on the (𝛼20, 𝛼30)-plane minimised over (𝛼22, 𝛼40) for 210Pb
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Evolution of Pear-Shape Instabilities: 212Pb

• Projection on the (𝛼20, 𝛼30)-plane minimised over (𝛼22, 𝛼40) for 212Pb

212Pb
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Evolution of Pear-Shape Instabilities: 216Pb

• Projection on the (𝛼20, 𝛼30)-plane minimised over (𝛼22, 𝛼40) for 216Pb
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Evolution of Pear-Shape Instabilities: 218Pb

• Projection on the (𝛼20, 𝛼30)-plane minimised over (𝛼22, 𝛼40) for 218Pb

218Pb
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Comparison: 𝝀 = 3 Susceptibility in 218Pb Region

•Projection on the (𝛼20, 𝛼3𝜇)-plane minimised over (𝛼22, 𝛼40) for 218Pb

218Pb

-0.6 -0.3 0.0 0.3 0.6 0.9

Deformation α20

-0.3
-0.2
-0.1
0.0

0.1

0.2

0.3

D
ef

or
m

at
io

n
α

3
0

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

MeV

.

218Pb

-0.6 -0.3 0.0 0.3 0.6 0.9

Deformation α20

-0.3
-0.2
-0.1
0.0

0.1

0.2

0.3

D
ef

or
m

at
io

n
α

3
1

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

MeV

.

218Pb

-0.6 -0.3 0.0 0.3 0.6 0.9

Deformation α20

-0.3
-0.2
-0.1
0.0

0.1

0.2

0.3

D
ef

or
m

at
io

n
α

3
2

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

MeV

.

218Pb

-0.6 -0.3 0.0 0.3 0.6 0.9

Deformation α20

-0.3
-0.2
-0.1
0.0

0.1

0.2

0.3

D
ef

or
m

at
io

n
α

3
3

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

MeV

.

I. Dedes, IFJ Polish Academy of Sciences Exotic Shapes and Symmetries Around Octupole 𝑵 = 136



Observations about Heavy Pb Isotopes

•Appearance of strongly pronounced octupole minima for increasing neutron
number→ the highest barriers separating double minima arriving at 𝑁 = 136

• Comparison of the 2D-projections onto (𝛼20, 𝛼3𝜇)-planes shows that four
octupole deformations produce well-pronounced double minima at 𝛼20 = 0.0
and 𝛼3𝜇 ≠ 0.0 → The loss of sphericity at 𝝀 ≠ 2 multipolarity↔ exoticity

• The strongest octupole effect for 218Pb (𝑁 = 136) corresponds to
𝜶32↔ Tetrahedral Symmetry Td

• Since these heavy Pb-isotopes represent exotic nuclei, they do not have a lot
of experimental data known

⇒We check the 𝑍 > 82 nuclei since they are easier to access experimentally
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Exotic Symmetries for 𝒁 > 82 Nuclei: 222Rn

• Projection on the (𝛼20, 𝛼3𝜇)-plane minimised over (𝛼22, 𝛼40)
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Observations

•Appearance of strongly pronounced octupole minima in nuclei with 𝑍 > 82,
especially those close to 𝑁 = 136

• In contrast to the Pb case, some of the octupole instabilities appear for
𝛼20 ≠ 0.0

• This favours the experimental identification of slightly broken tetrahedral
symmetry since with 𝐵(𝐸2) ≠ 0 one can hope for profiting from the Germa-
nium multi-detector systems and identify, even if weak, quadrupole transitions

⇒What are the induced exotic molecular symmetries? ⇐

We use Point Group and Group-Representation Theories
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Synthetic View of Octupole Instabilities

• The octupole-shape deformations include 𝛼𝜆=3,𝜇=0,1,2,3 thus leading
to 4 independent degrees of freedom (Note: minima obtained at 𝛼20 = 0)

{𝛼30 ≠ 0, 𝛼31 ≠ 0, 𝛼32 ≠ 0, 𝛼33 ≠ 0}

• One can demonstrate that they generate Point-Group Symmetries:

C∞v, C2v, Td, D3h, respectively

• It turns out that octupole static or dynamic state equilibria may lead
to specific rotational band structures⇒ what are these structures?
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Molecular (Point-Group) Symmetries - C2v⇔ 𝜶31

• Symmetry induced by both (𝜶31 ≠ 0) and (𝜶20 ≠ 0, 𝜶31 ≠ 0)

α 3, 1 = 0.25
Deformation:

𝜶31 = 0.25

α 2, 0 = 0.15
α 3, 1 = 0.25

Deformations:

𝜶20 = 0.15, 𝜶31 = 0.25

Nuclear C2v Point Group Symmetry
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Molecular (Point-Group) Symmetries - Td & D2d⇔ 𝜶32

• Symmetry induced by (𝜶32 ≠ 0) and (𝜶20 ≠ 0, 𝜶32 ≠ 0)

α 3, 2 = 0.25
Deformation:

Tetrahedral Td: 𝜶32 = 0.25

α 2, 0 = 0.15
α 3, 2 = 0.25

Deformations:

D2d: 𝜶20 = 0.15, 𝜶32 = 0.25

Nuclear Td and D2d Point Group Symmetries
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Molecular (Point-Group) Symmetries - D3h⇔ 𝜶33

• Symmetry induced by both (𝜶33 ≠ 0) and (𝜶20 ≠ 0, 𝜶33 ≠ 0)

α 3, 3 = 0.25
Deformation:

𝜶33 = 0.25

α 2, 0 = 0.15
α 3, 3 = 0.25

Deformations:

𝜶20 = 0.15, 𝜶33 = 0.25

Nuclear D3h Point Group Symmetry
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How to proceed once we know the point group
representing a certain symmetry of interest?

Suggestion: Examine rotational properties
of concerned nuclei with the help

of the group representation theory
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Reminders: 𝑬-vs-𝑰 Parabolic Dependence

• Hartree-Fock-Bogolyubov spin-parity projected: Microscopic theory result

• 𝐼 𝜋Td
= 0+, 3− , 4+, 6±, 7− , 8+, 9±, 10±, 11− , . . . form a common parabola
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Rotational Band Properties of Exotic Symmetries: Td

The first tetrahedral symmetry evidence based on the experimental data

✻✰
✽✰
✾✰
✶✵✰

✸�

✻�
✼�

✾�
✶✵�
✶✶�

❙❝❤❡♠❛t✐❝ ■❧❧✉str❛t✐♦♥

✁②✂✂✄☎✆② ❚❞
✝✺✷
✞✷✟✠✡☛

☞✿✹

☞✿✌

✍✿✍

✍✿✎

✏✿✑

❊
✒
✓✔
❣
✕
✭▼
✓
❱
✮

✵✰

✖✰

❘▼❙ ❂✶✹✿✻ ❦❡❱

✵ � ✷ ✸ ✁ ✺ ✂ ✼ ✽ ✾ �✵ ��

✄♣✐♥ ■ ✭✖❤✮

❊①☎✆r✝♠✆✞t❛❧ ✟✆s✉❧ts

✄②✠✠✡☛☞② ❚❞

RMS = 80.5 keV

Tetrahedral Band : 𝑰𝝅Td
= 0+, 3− , 4+, 6±, 7− , 8+, 9±, 10±, 11− , . . .

→ Published in: J. Dudek et al., PHYSICAL REVIEW C 97, 021302(R) (2018)
[DOI: https://doi.org/10.1103/PhysRevC.97.021302]

• The R.M.S. of the ground-state band is 15.18 keV
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Resulting Prediction of the Structure of C2v-Bands

•Multiplicity factors for the 4 irreducible representations of C2v-group

𝐼+ 0+ 1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10+

𝐴1 1 0 2 1 3 2 4 3 5 4 6
𝐴2 0 1 1 2 2 3 3 4 4 5 5
𝐵1 0 1 1 2 2 3 3 4 4 5 5
𝐵2 0 1 1 2 2 3 3 4 4 5 5

𝐼− 0− 1− 2− 3− 4− 5− 6− 7− 8− 9− 10−

𝐴1 0 1 1 2 2 3 3 4 4 5 5
𝐴2 1 0 2 1 3 2 4 3 5 4 6
𝐵1 0 1 1 2 2 3 3 4 4 5 5
𝐵2 0 1 1 2 2 3 3 4 4 5 5

• In this way we find the spin-parity sequence for 𝐴1-representation

A1 : 0+, 1− , 2 × 2+, 2− , 3+, 2 × 3− , 3 × 4+, 2 × 4− , 2 × 5+, 3 × 5− , 4 × 6+, 4 × 6− , · · ·

• Group-theory prediction of the spin-parity structure of the C2v g.s.b.
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G.S.B. Predictions Overview: C2v, D2d and D3h

• Group-theory prediction of the spin-parity structure of the C2v
g.s.b. spin-parity sequence for 𝑨1-representation

C2v → A1 : 0+ , 1− , 2 × 2+ , 2− , 3+ , 2 × 3− , 3 × 4+ , 2 × 4− , 2 × 5+ , 3 × 5− , 4 × 6+ , 4 × 6− , · · ·

• Group-theory prediction of the spin-parity structure of the D2d
g.s.b. spin-parity sequence for 𝑨1-representation

D2d → A1 : 0+ , 2± , 3− , 2 × 4+ , 4− , 5± , 2 × 6+ , 2 × 6− , 7+ , 2 × 7− , · · ·

• Group-theory prediction of the spin-parity structure of the D3h
g.s.b. spin-parity sequence for 𝑨1-representation

D3h → A1 : 0+ , 2+ , 3− , 4± , 5− , 2 × 6+ , 6− , 7± , 2 × 8+ , 8− , · · ·

• No 𝚫𝑰 = 2 sequences !!
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Rotational Band Properties of Exotic Symmetries

• Each point group symmetry implies specific degeneracy patterns
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Experimental Data Selection for C2v

• Analysing NNDC experimental data for Td symmetry in 152Sm
took 3 months of manual work

• Collecting experimental evidence via NNDC for C2v in 236U
took 30 seconds of computer program∗)

∗) I. Dedes in collaboration with M. Martin, Simon Fraser University, Canada
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Experimental Data Selection for C2v

About criteria for the experimental data search

C2v → A1 : 0+, 1− , 2 × 2+, 2− , 3+, 2 × 3− , 3 × 4+, 2 × 4− , 2 × 5+, 3 × 5− , 4 × 6+, 4 × 6− , · · ·

•Avoid rotational bands generated by leading ellipsoidal geometry and
characterised by strong Δ𝐼 = 2 quadrupole transitions

• Identified yrast-trap or 𝐾-isomers and related axial symmetry non-
collective particle-hole excitations should be eliminated

• Energy-wise – C2v bands form regular sequences

𝑬𝑰 ∝ 𝑨𝑰2
+ 𝑩𝑰 + 𝑪
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Experimental Identification - Recent Results : 236U

• Rotational band structure of a nucleus in a C2v-symmetric configuration
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A1 : rms = 12.14 keV
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Attention: Experimental degeneracies for 236U according to NNDC

• Conclusion:
1) Single rotational band followed by 16 states with rms deviation 12.14 keV

[rms(gsb)=3.79 keV]
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Attention: Experimental degeneracies for 236U according to NNDC

• Conclusions:
1) Single rotational band followed by
16 states with rms deviation 12.14 keV
[rms(gsb)=3.79 keV]

2) Degeneracies characteristic for C2v-
symmetry, even if partial, are there

3) The C2v symmetry elements are:
E the identity operation
C2 a twofold symmetry axis
𝝈v the first mirror plane (xz)
𝝈′v the first mirror plane (yz)

• H2O has C2v-symmetry:

I. Dedes, IFJ Polish Academy of Sciences Exotic Shapes and Symmetries Around Octupole 𝑵 = 136



Experimental Identification - Recent Results : 236U

• Rotational band of a nucleus in a C2v-symmetric configuration
Attention: Experimental degeneracies for 236U according to NNDC

• Conclusions:
1) Single rotational band followed by
16 states with rms deviation 12.14 keV
[rms(gsb)=3.79 keV]

2) Degeneracies characteristic for C2v-
symmetry, even if partial, are there

3) The C2v symmetry elements are:
E the identity operation
C2 a twofold symmetry axis
𝝈v the first mirror plane (xz)
𝝈′v the first mirror plane (yz)

• H2O has C2v-symmetry:

I. Dedes, IFJ Polish Academy of Sciences Exotic Shapes and Symmetries Around Octupole 𝑵 = 136



Experimental Identification - Recent Results : 236U

• Rotational band of a nucleus in a C2v-symmetric configuration
Attention: Experimental degeneracies for 236U according to NNDC

• Conclusions:
1) Single rotational band followed by
16 states with rms deviation 12.14 keV
[rms(gsb)=3.79 keV]

2) Degeneracies characteristic for C2v-
symmetry, even if partial, are there

3) The C2v symmetry elements are:
E the identity operation
C2 a twofold symmetry axis
𝝈v the first mirror plane (xz)
𝝈′v the first mirror plane (yz)

• H2O has C2v-symmetry:

I. Dedes, IFJ Polish Academy of Sciences Exotic Shapes and Symmetries Around Octupole 𝑵 = 136



Experimental Identification - Recent Results : 236U

• Rotational band of a nucleus in a C2v-symmetric configuration
Attention: Experimental degeneracies for 236U according to NNDC

• Conclusions:
1) Single rotational band followed by
16 states with rms deviation 12.14 keV
[rms(gsb)=3.79 keV]

2) Degeneracies characteristic for C2v-
symmetry, even if partial, are there

3) The C2v symmetry elements are:
E the identity operation
C2 a twofold symmetry axis
𝝈v the first mirror plane (xz)
𝝈′v the first mirror plane (yz)

• H2O has C2v-symmetry:

I. Dedes, IFJ Polish Academy of Sciences Exotic Shapes and Symmetries Around Octupole 𝑵 = 136



Experimental Identification - Recent Results : 236U

• Rotational band of a nucleus in a C2v-symmetric configuration
Attention: Experimental degeneracies for 236U according to NNDC

• Conclusions:
1) Single rotational band followed by
16 states with rms deviation 12.14 keV
[rms(gsb)=3.79 keV]

2) Degeneracies characteristic for C2v-
symmetry, even if partial, are there

3) The C2v symmetry elements are:
E the identity operation
C2 a twofold symmetry axis
𝝈v the first mirror plane (xz)
𝝈′v the first mirror plane (yz)

• H2O has C2v-symmetry:

I. Dedes, IFJ Polish Academy of Sciences Exotic Shapes and Symmetries Around Octupole 𝑵 = 136



Exotic Symmetries for 236U – Suspects for C2v
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•We associate the prolate minimum at 𝛼th
20 ∼ 0.25 [r.m.s.(𝛼exp

20 ) = 0.2821(18)]∗) with
the ground-state,...

• ... and the oblate minimum at 𝛼th
20 ∼ −0.12 extended on 𝛼31 as the C2v symmetry

—-
∗) S. Raman, C. W. Nestor, JR., and P. Tikkanen

Atomic Data and Nuclear Data Tables, Vol. 78, No. 1, May 2001
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We know that the potential energy landscapes
may only give qualitative suggestions

about equilibrium deformations→ shapes & symmetries

We will turn to the s o l u t i o n s
of the collective Schrödinger equation!!
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Collective Schrödinger Equation

• Our group has developed∗) new concepts of adiabaticity within col-
lective model of Bohr and related approach to collective inertia tensor

•Using a newly re-formulated concept of adiabaticity and perturbation theory
a new method of calculating collective inertia tensor 𝐵𝛼𝜆,𝜇 ,𝛼𝜆′ ,𝜇′ (𝛼) is obtained

• The new expression is free form destructive divergencies contained in all
the preceding formulations of this theory← Particularly important new result

•Collective excitations in 208Pb are reproduced without parameter adjustments

• All the details, illustrations, comparisons with experiment can be found in:
“A New Approach to Adiabaticity Concepts in Collective Nuclear Motion:

Impact for the Collective-Inertia Tensor and Comparisons with Experiment”
∗)PHYSICAL REVIEW C 99, 041303(R) (2019)

D. Rouvel and J. Dudek
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Collective Schrödinger Equation

• It follows that the collective energy operator is (𝑞𝑚 ↔ 𝛼𝜆,𝜇, 𝐵-mass tensor)

𝐻̂coll = −
ℏ2

2
Δ +𝑉 (𝛼) ↔ Δ

𝑑 𝑓 .
=

𝑑∑︁
𝑚,𝑛=1

1√︁
|𝐵 |

𝜕

𝜕𝑞𝑛

(√︁
|𝐵 |𝐵𝑛𝑚 𝜕

𝜕𝑞𝑚

)
.

with the resulting collective Schrödinger equation

𝐻̂collΨcoll = 𝐸collΨcoll

• All the details, illustrations, comparisons with experiment can be found in:
A New Approach to Adiabaticity Concepts in Collective Nuclear Motion:

Impact for the Collective-Inertia Tensor and Comparisons with Experiment

PHYSICAL REVIEW C 99, 041303(R) (2019)
D. Rouvel and J. Dudek
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Collective Schrödinger Equation for C2v

• The most probable 𝛼31 deformation↔ the so-called “dynamic equilibrium”
↔ the most probable C2v-symmetric shape

𝛼
dyn
31 ↔ ⟨𝛼2

31⟩ =
∫

Ψ∗ (𝛼31)𝛼2
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• Resulting dynamical equilibrium values are close to typical values of the
secondary deformations such as the hexadecapole one reported in many nuclei
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Summary and Conclusions

Background and Motivation of this Project
• Using the newest exp. results, we adjusted the 12 universal WS parameters
common for the whole mass table employing the Inverse Problem Theory of
applied mathematics to assure prediction stability especially for exotic nuclei

• We have performed large-scale nuclear potential-energy calculations in
multidimensional 𝛼𝜆,𝜇-deformation spaces – for over 700 even-even nuclei→

Here we illustrated exotic symmetry effects near 208Pb

•We focussed attention on a universal magic gap 𝑁 = 136 generating strong
shell effects/minima for 𝛼30, 𝛼31, 𝛼32 and 𝛼33 deformations – simultaneously

•We applied the standard group-, and point-group theory as tools to predict
rotational band spin-parity sequences – to identify the new exotic symmetries

• Should stable minima or dynamical equilibrium deformations appear as
associated with either 𝛼30 or 𝛼31 or 𝛼32 or 𝛼33 deformations, they would
generate point group symmetries C∞v, C2v, Td and D3h

• We have presented to our knowledge the world first identification of the
exotic C2v point group symmetry – a confirmation of the symmetry approach
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This presentation is based on the theory methods illustrated in the recent articles:

Spectroscopic criteria for identification of nuclear tetrahedral and octahedral symmetries:
Illustration on a Rare Earth nucleus

PHYSICAL REVIEW C 97, 021302(R) (2018)
J. Dudek, D. Curien, I. Dedes, K. Mazurek, S. Tagami, Y. R. Shimizu and T. Bhattacharjee

Predictive Power of theoretical modelling of the nuclear mean field:
Examples of improving predictive capacities

PHYSICA SCRIPTA 93, 044003 (2018)
I. Dedes, and J. Dudek

Propagation of the nuclear mean-field uncertainties with increasing distance from the
parameter adjustment zone: Applications to superheavy nuclei

PHYSICAL REVIEW C 99, 054310 (2019)
I. Dedes, and J. Dudek

Exotic shape symmetries around the fourfold octupole magic number 𝑵 = 136:
Formulation of experimental identification criteria

PHYSICAL REVIEW C 105, 034348 (2022)
J. Yang, J. Dudek, I. Dedes, A. Baran, D. Curien, A. Gaamouci, A. Góźdź, A. Pȩdrak,

D. Rouvel, H. L. Wang, and J. Burkat
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