

a – Flerov Laboratory of Nuclear Reactions, JINR, Dubna, Russia
b – Institute of Physics, Silesian University in Opava, Czech Republic
c – Bogolyubov Laboratory of Theoretical Physics, JINR, Dubna, Russia
d – GSI Helmholtzzentrum fur Schwerionenforschung, Darmstadt, Germany
e – National Research Center "Kurchatov Institute", Moscow, Russia
f – Heavy Ion Laboratory, University of Warsaw, Warsaw, Poland
g – Skobel'tsyn Institute of Nuclear Physics, Moscow State University, Russia
h – Faculty of Physics, University of Warsaw, Warsaw, Poland
– Fundamental Physics, Chalmers University of Technology, Goteborg, Sweden
j – All-Russian Research Institute of Experimental Physics, Sarov, Russia
k – Ioffe Physical Technical Institute, St. Petersburg, Russia
I – NSCL, Michigan State University, East Lansing, Michigan, USA

STATUS OF THE NEW FRAGMENT SEPARATOR ACCULINNA-2 AND FIRST EXPERIMENTS

Grzegorz Kaminski^{a,f} for ACCULINNA Collaboration

Outline

- Introduction: FLNR research area
- Light RIB facility at FLNR: ACCULINNA
- New RIB faclility at FLNR: ACCULINNA-2
- ACCULINNA-2 instrumentation
- Experiments @ACCULINNA& first day experiments at ACCULINNA-2
- The Optical Time Projection Chamber (OTPC) at ACCULINNA
- Future plans & collaborations

Flerov Laboratory of Nuclear Reactions (founded in the JINR in 1957)

LABORATORY FOUNDER - Georgiy Nikolaevich FLEROV, 1913 – 1990 **Basic directions of research at FLNR** 1. Heavy and superheavy nuclei Synthesis and study of properties of superheavy elements Chemistry of new elements Fusion-fission and multi-nucleon transfer reactions Mass-spectrometry and nuclear spectroscopy of SH nuclei °Не 2. Light exotic nuclei Properties and structure of light exotic nuclei Reactions with exotic nuclei 3. Radiation effects and physical bases of nanotechnology Track membrans **Nanostructures** Study of materials properties

4. Accelerator technology

cyclotrons
 ECR ion sources

Main areas of interest at FLNR at nuclide chart

more information @ http://flerovlab.jinr.ru/flnr/accelerators.html

ACCULINNA separator

ACCULINNA – High resolution RIB line for K4 storage ring

Fig.1. The general view of the latest upgrad of the storage complex K4-K10.
1 - RIB production target; 2 - intermediate focal plane;
3 - secondary experemental target; 4 - analysing magnet; 5 - debuncher.

Exolic Beality In K4.						
BEAMS	T _{1/2} (sec)	N – N _{drip}	E _{inj} (Mev/amu)	E _{max} (Mev/amu)	NUMBER OF IONS	$\frac{L}{\left(s^{-1}cm^{-2}\right)}$
6	0.909			80		
°He	0.808	2	42	80	10*	1024
⁸ He	0.122	0	43	50	10 ²	10 ²²
⁸ Li	0.84	3	41	105	104	10 ²⁴
⁹ Li	0.178	2	44	80	10 ³	10 ²³
¹¹ Be	13.8	3	44	100	105	10 ²⁵
¹² B	0.02	5	40	125	105	10 ²⁵
¹⁶ C	0.75	6	42	105	10 ³	10 ²³
¹⁴ O	70.6	2	36	225	105	10 ²⁵
²⁴ Ne	225	8	20	125	10 ⁶	10 ²⁶
²⁸ Mg	7×10^4	12	20	130	107	10 ²⁷
³⁸ S	1×10^{4}	14	17	130	107	10 ²⁷
^{44m} Sc	2×10^{5}	9	22	160	10 ⁸	10 ²⁸
$\left(J^{p}=6^{+}\right)$						

Exotic Beams in K4.

K4 storage ring: production of high precision Exotic Ion Beams (EIB's) with A < 100.

G. M. Ter-Akopian et al., Heavy Ion Storage Ring Complex K4-K10. A technical proposal JINR E9-92-15, Dubna 1992

RIB production at ACCULINNA – projectile fragmentation

ACCULINNA at the U400M cyclotron hall

http://aculina.jinr.ru/virtual_tour/index.html

The main area of activity at ACCULINNA, FLNR

⁸He&¹⁰He: ³H(⁶He,p)⁸He & ³H(⁸He,p)¹⁰He reactions

- Slow protons registered in the backward direction, what limits the maximal ⁸He and ¹⁰He excitation energy to about 14 and 17 MeV.
- ^(P) ^{8,10}He registered in the forward telescope. Neutrons are registered by 49 DEMON modules.
- T's complete kinematics reconstruction.

¹⁰He: ³H(⁸He,p)¹⁰He

Use of the ACCULINNA fragment separator has Advantages:

• The <u>record intensity</u> of the primary cyclotron beams (5 p μ A of ¹¹B);

• Relatively (for in-flight separators) **low beam energies**, that provide a good energy resolution, high reaction cross section partly compensate the low intensities of secondary beams.

• These **beam energies are optimal** for the nuclear structure studies in transfer, charge-exchange reactions;

- Complete kinematics method allows for clean, background-free spectra;
- <u>Correlation studies</u> provides possibilities for spin-parity identification of the resonance states.

ACCULINNA-2 separator – beginning of the project 2010 - 2011

ACCULINNA-2 - project assumptions

calculations done with LISE++

Primary beam		Radioactive Ion Beam				
lon	Energy, MeV/u	lon	Energy, MeV/u	Intensity, s ⁻¹ (per 1 pµA)	Purity, %	
¹¹ B	32	⁸ He	26	3*10 ⁵	90	
¹⁵ N	49	¹¹ Li	37	3*10 ⁴	95	
¹¹ B	32	¹⁰ Be	26	1*10 ⁸	90	
¹⁵ N	49	¹² Be	38.5	2*10 ⁶	70	
¹⁸ 0	48	¹⁴ Be	35	2*10 ⁴	50	
22		¹⁷ C	33	3*10 ⁵	40	
2 ² Ne	44	¹⁸ C	35	4*10 ⁴	30	
³⁶ S	64 (U400M upgrade)	²⁴ 0	40	2*10 ²	10 (with RF kicker)	
¹⁰ B	39	⁷ Be	26	8*10 ⁷	90	
²⁰ Ne	53	¹⁸ Ne	34	2*10 ⁷	40	
³² S	52	²⁸ Be	31	2*10 ⁴	5 (with RF kicker)	

From contract signing to installation October 2011 to December 2015

Layout of the ACCULINNA-2 separator

- RIB energy range 6 50 MeV/A
- $Z_{\text{RIB}} \simeq 1 36$

« In the beginning, there was Chaos »

Greek Mythology – The Creation

Installation out of reach of the crane

SIGMAPH

Standardization groups objects with "similar" properties

Advantages

- Huge reduction in cost for design, tooling and fabrication
 - Exchangeability and servicing

Drawbacks

- Slightly sub-optimal design
 - Higher material costs

PARTIAL standardization keeps most of the advantages while taming drawbacks **COMPLETE** standardization is NOT the best solution

ACCULINNA-2 at experimental area

The zero degree spectrometer

Zero degree spectrometer - experiments with light RIB : separation of light and heavy charged fragments and neutrons

- Max. 1,38 Tm
- Thin (330 mm) open-frame design

Installation: February 2017, -20 °C outside temperature

November 2017

~ Half of the founds for Zero degree spectrometer was supported from Polish grants at JINR

- The frequency range 14,5 20 MHz is the best compromise in terms of dimensions and RF power
- We consider some margin on the RF power and a 15 Kwatts amplifier.
- Reducing the copper cavity diameter to 1000 mm and the coaxial line diameter to 100 mm gives a RF power of 12 Kwatts which is still below 15 Kwatts.

RF kicker: started in 2016, installation planned in 2019

Study light exotic nuclei such as ⁵H, ⁷H, ⁹He, ¹⁰He, and ¹⁰Li, etc. – neutron detection

Stilbene crystal: \varnothing 80 mm, thickness 50 mm

in the aluminum shell

A. Bezbakh et al.,, Instr. and Exp. Tech. 2018, Vol. 61, No. 5, pp. 631–638.

neutron array at ACCULINNA-2

ACCULINNA-2 separator – First RIBs

ACCULINNA-2 - status

Beam optics test and first radioactive ion beams in March, 2017 ¹⁵N(49.7 AMeV) +⁹Be(2 mm), @ 1 pnA (7enA)

ACCULINNA-2 - status

Beam optics test and first radioactive ion beams in March, 2017 ¹⁵N(49.7 AMeV) +⁹Be(2 mm), @ 1 pnA (7enA)

First beam optics tests & First RIB at ACCULINNA-2

ACCULINNA-2 - status

ACCULINNA-2 - status

¹⁵N (49.7 AMeV) + Be (2 mm)

180 ToF

_ 🗆 ×

190

_ 🗆 X

 $I \sim 10^5$ pps @ 100 pnA, $\Delta p/p = 6\%$ (Be wedge 3 mm)

			• ,
RIB	Energy, Amev	Intensity, 1/s	Purity, %
¹⁴ B	37,7	$1.2 \cdot 10^4$	65
¹² Be	39,4	$1.5 \cdot 10^4$	92
¹¹ Li	37	4.10^{2}	67
⁹ Li	33,1	1.1·10 ⁵	50
⁸ He	35,8	2.5·10 ³	89

I = 100 pnA, $\Delta p/p = \pm 2\%$ (Be wedge 1 mm)

- Good agreement with calculations Intensity, Lise++
- Higher intensity compared to ACCULINNA in 15 times!

First experiments with ⁶He and ⁹Li on CD₂ target were carried out at ACC-2 in spring:

- elastic and inelastic scattering of ⁶He;
 - d(⁶He,³He)⁵H reaction;
 - $d({}^{9}\text{Li},p){}^{10}\text{Li} \rightarrow n{}^{9}\text{Li}$ run.

dE [arb. units]

Beam parameters:

- 78% of ⁶He
- Energy
 26 AMeV
- Intensity 10⁵ pps

Experimental data for B. Zalewski Ph.D Thesis (HIL, UW, Warsaw)

Key points for 22 µm Si : thickness uniformity and energy resolution

Elastic and inelastic scattering of ⁶He (26 AMeV) on ²H:

Preliminary results of elastic and inelastic scattering of ⁶He (26 AMeV) on ²H: $d\sigma/d\Omega$ in a wide angular range (3 runs, $\theta_{CM} \sim 30 \div 110^{\circ}$) with a good statistics

Moving ahead to the flagship experiment ⁷H - Radiation shield

Radiation shell around F1-F2 area is completed.

Radiation shell will let to operate at full beam intensity.

Modernized U-400M cyclotron will provide higher intensity beams (~ 3 μA on the target in case of $^{15}N)$

- Water cooled beryllium target mounted on magnetic liquid feedthrough with rotation speed up to 1500 rpm
- Heating power up to 2 kW
- Vacuum chamber for fast opening and service
- Integrated system of water cooled diaphragms
- Special port for beam profile monitor (BPM)

Nov. 2018: d(8He,3He)7H: 7 weeks (effect + background)

Advantages: good energy resolutions (~1.2 MeV) & ³He-t-n coincidencdes

Nov. 2018: d(8He,3He)7H: 7 weeks (effect + background)

Study with OTPC at ACCULINNA

More than 10 years of collaboration with FUW

Nuclid chart

Radioactivity at the nuclear drip-lines (proton-rich nuclei)

When the β -decay energy is large, many exotic channels are available:

- exotic decay modes (1p, 2p radioactivity)
- multiparticle β-delayed particle emission

Optical **T**ime **P**rojection **C**hamber (OTPC) - A new type of modern ionization chamber with an optical readout. Invented at the University of Warsaw by prof. W. Dominik

Collaborative experiments with Physics Faculty, UW, Warsaw

Historical: first tests of the OTPC at ACCULINNA by FUW team

²⁰Ne @ 50 MeV/u + ⁹Be \rightarrow ACCULINNA \rightarrow tests beams : ¹³O, ¹²N, ⁸Li

Study of β -delayed charged particle emission from ²⁷S @ACCULINNA, FLNR, JINR

Study of β -delayed charged particle emission from ²⁷S @ACCULINNA, FLNR, JINR

Polish colleagues coming to FLNR (September 2015)

ACCULINNA during ²⁷S beam preparation

Data acquisition

 β -delayed charged particle emission from ²⁷S and ²⁶P

In 2019 new measurments of β -delayed particle emission from ²⁷S @ **ACCULINNA-2** are considered. Much better statistic of two orders of magnitude is expected (we plan to purify the beam with RF-kicker). Observation of β 3p channel is still an open question.

 32 S @ 50 MeV/u + 9 Be \rightarrow ACC \rightarrow 27 S, 26 P

We have too low statistic to get the limit for observation of $\beta 3p$

L. Janiak, N Sokolowska et al., PRC 95 (2017) 034315, N. Sokołowska, Master Thesis, AGH, Krakow 2016

Feb. 2018, ACC-1. β -delayed particle emission of ¹¹Be ($T_{1/2}$ = 13.76 s) was studied. The other isotopes, ⁸Li ($T_{1/2}$ = 0.84 s), ⁸B ($T_{1/2}$ = 0.77 s) and ⁹C ($T_{1/2}$ = 0.126 s), were used for the crosscheck measurements. \rightarrow The method OTPC works well even in the case of long-lived nuclei.

 \rightarrow New data with a good statistics were obtained for ¹¹Be and ⁹C.

Preliminary results: examples of ${}^{9}C$ (T_{1/2} = 0.126 s) and ${}^{11}Be$ (T_{1/2} = 13.76 s) decay

University of Warsaw

- E. Adamska
- A. Ciemny
- W. Dominik
- L. Janiak
- A. Giska
- Z. Janas
- A. Kubiela
- C. Mazzochi
- K. Miernik
- M. Pfutzner
- M. Pomorski
- N. Sokołowska

<u>JINR Dubna</u>

- A. Bezbakh
- A. Fomichev
- M. Golovkov
- A. Gorshkov
- G. Kamiński (HIL, UW)
- S. Krupko
- R. Slepnev
- B. Zalewski (HIL, UW)

- ACCULINNA-2 fragment separator commissioned in 2017 is now ready for first-day experiments.
- The intensities obtained in the fragmentation reaction ¹⁵N (49.7 AMeV) + ⁹Be for the RIBs of ¹⁴B, ¹²Be, ^{9,11}Li, ^{6,8}He were on average 15-20 times higher in comparison with the values for old facility.
- The first-priority experimental program with RIBs is focused on ⁶He+d scattering, betadelayed exotic decays of ¹¹Be and ^{5,7}H study.
- Further experiments (with RF-kicker and zero angle spectrometer) will be aimed on 26 S observation in (*p*,*t*) reaction with 28 S and 27 S with the OTPC spectrometer.
- Study of RIB at driplines stimulates of a new novel instrumentation and engineering inventions
- We are open for collaboration

Some of Polish collaborators at FLNR at the beam time

Today (29.11.2018) in Dubna there is an official "opening" of a new bridge

The first collaborator who could cross the bridge is dr Paweł Napiorkowski – who is now in Dubna

Thank you for attention