Barrier distributions studies at HIL: recent results and future plans

Giulia Colucci

Heavy Ion Laboratory, University of Warsaw, Warsaw, Poland

on behalf of HIL Barrier Group

- Near barrier fusion reactions
- Fusion and quasielastic barrier distributions
- D_{QE} measurements performed at HIL and LNS
- Transfer cross section measurements at HIL
- New CCQEL code: the cases of ²⁴Mg + ⁹²Zr and ²⁰Ne + ²⁰⁸Pb
- D_{QE} of ²⁰Ne + ^{92,94,95}Mo
- Transfer measurement of ²⁰Ne + ^{92,94,95}Mo
- Future plans: fusion
- Summary

Fusion and quasielastic barrier distributions

D_{QE} measurements performed at HIL and LNS

Transfer cross section measurements at HIL

```
New CCQEL code:
the cases of <sup>24</sup>Mg + <sup>92</sup>Zr
and <sup>20</sup>Ne + <sup>208</sup>Pb
```

```
D<sub>QE</sub> of <sup>20</sup>Ne + <sup>92,94,95</sup>Mo
```

Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

Two interactions: long range repulsive **Coulomb force** and short range attractive **nuclear force**. Cancellation between the two forces generates **Coulomb barrier**.

Fusion and quasielastic barrier distributions

D_{QE} measurements performed at HIL and LNS

Transfer cross section measurements at HIL

```
New CCQEL code:
the cases of <sup>24</sup>Mg + <sup>92</sup>Zr
and <sup>20</sup>Ne + <sup>208</sup>Pb
```

D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

Two interactions: long range repulsive **Coulomb force** and short range attractive **nuclear force**. Cancellation between the two forces generates **Coulomb barrier**.

Why sub-barrier fusion?

٠

- Many-particle tunnelling effect
 - Many types of intrinsic degrees of freedom (collective vibrational, rotational states..)
 - Energy dependence of tunnelling probability
- Strong interplay between reaction and structure

Fusion and quasielastic barrier distributions

D_{QE} measurements performed at HIL and LNS

Transfer cross section measurements at HIL

New CCQEL code: the cases of ²⁴Mg + ⁹²Zr and ²⁰Ne + ²⁰⁸Pb

D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

One-dimensional model

 $H(r) = -\frac{\hbar^2}{2\mu}\frac{d^2}{dr^2} + V(r)$

Fusion and quasielastic barrier distributions

D_{QE} measurements performed at HIL and LNS

Transfer cross section measurements at HIL

New CCQEL code: the cases of ²⁴Mg + ⁹²Zr and ²⁰Ne + ²⁰⁸Pb

D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

One-dimensional model

 $H(r) = -\frac{\hbar^2}{2\mu} \frac{d^2}{dr^2} + V(r)$ $V(r) = V_C(r) + V_N(r)$

Fusion and quasielastic barrier distributions

D_{QE} measurements performed at HIL and LNS

Transfer cross section measurements at HIL

```
New CCQEL code:
the cases of <sup>24</sup>Mg + <sup>92</sup>Zr
and <sup>20</sup>Ne + <sup>208</sup>Pb
```

```
D<sub>QE</sub> of <sup>20</sup>Ne + <sup>92,94,95</sup>Mo
```

Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

One-dimensional model

Enhancement due to strong couplings between the relative motion of colliding nuclei and the intrinsic degrees of freedom of target and/or projectile

Fusion and quasielastic barrier distributions

D_{QE} measurements performed at HIL and LNS

Transfer cross section measurements at HIL

New CCQEL code: the cases of ²⁴Mg + ⁹²Zr and ²⁰Ne + ²⁰⁸Pb

D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

One-dimensional model

Enhancement due to strong couplings between the relative motion of colliding nuclei and the intrinsic degrees of freedom of target and/or projectile

Fusion and quasielastic barrier distributions

D_{OF} measurements performed at HIL and LNS

Transfer cross section measurements at HIL

New CCQEL code: the cases of ²⁴Mq + ⁹²Zr and ²⁰Ne + ²⁰⁸Pb

(MeV)

D_{OE} of ²⁰Ne + ^{92,94,95}Mo

Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

One-dimensional model

Enhancement due to strong couplings between the relative motion of colliding nuclei and the intrinsic degrees of freedom of target and/or projectile

Correlation between the degree of enhancement of the fusion cross sections and the energy of the first 2⁺ state

Fusion and quasielastic barrier distributions

D_{QE} measurements performed at HIL and LNS

Transfer cross section measurements at HIL

New CCQEL code: the cases of ²⁴Mg + ⁹²Zr and ²⁰Ne + ²⁰⁸Pb

D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

Coupled Channels model

$$H(r,\xi) = -\frac{\hbar^2}{2\mu} \frac{d^2}{dr^2} + V(r) + H_0(\xi) + V_{Coup}(r,\xi)$$

Fusion and quasielastic barrier distributions

D_{OE} measurements performed at HIL and LNS

Transfer cross section measurements at HIL

New CCQEL code: the cases of ²⁴Mg + ⁹²Zr and ²⁰Ne + ²⁰⁸Pb

D_{OE} of ²⁰Ne + ^{92,94,95}Mo

Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

Coupled Channels model

$$H(r,\xi) = -\frac{\hbar^2}{2\mu} \frac{d^2}{dr^2} + V(r) + H_0(\xi) + V_{Coup}(r,\xi)$$

Intrinsic Hamiltonian Hamiltonian

Coupling

Fusion and quasielastic barrier distributions

D_{QE} measurements performed at HIL and LNS

Transfer cross section measurements at HIL

New CCQEL code: the cases of ²⁴Mg + ⁹²Zr and ²⁰Ne + ²⁰⁸Pb

D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

Coupled Channels model

Sudden tunnelling limit

$$H(r,\xi) = -\frac{\hbar^2}{2\mu}\frac{d^2}{dr^2} + V(r) + H_0(\xi) + V_{Coup}(r,\xi) \implies \sigma_{FUS}(E) = \sum_{k} V_{FUS}(E)$$

Intrinsic Hamiltonian Coupling Hamiltonian

$$\sigma_{FUS}(E) = \sum_{k} w_k \sigma_{FUS}(E; V_k)$$

Fusion and quasielastic barrier distributions

D_{QE} measurements performed at HIL and LNS

Transfer cross section measurements at HIL

New CCQEL code: the cases of ²⁴Mg + ⁹²Zr and ²⁰Ne + ²⁰⁸Pb

D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

Coupled Channels model

Sudden tunnelling limit

$$H(r,\xi) = -\frac{\hbar^2}{2\mu} \frac{d^2}{dr^2} + V(r) + H_0(\xi) + V_{Coup}(r,\xi) \implies \sigma_{FUS}(E) =$$

Intrinsic Hamiltonian

Coupling Hamiltonian

$$\sigma_{FUS}(E) = \sum_{k} w_k \sigma_{FUS}(E; V_k)$$

 $\begin{array}{c} 1200 \\ 1000 \\ 0 \\ 800 \\ 600 \\ 400 \\ 200 \\ 0 \\ 55 \\ 60 \\ 65 \\ 60 \\ 65 \\ 70 \\ E_{c.m.} \\ (MeV) \end{array}$

Fusion and quasielastic barrier distributions

D_{QE} measurements performed at HIL and LNS

Transfer cross section measurements at HIL

New CCQEL code: the cases of ²⁴Mg + ⁹²Zr and ²⁰Ne + ²⁰⁸Pb

D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

Warsaw 13/06/2024 G. Colucci 3

Fusion and quasielastic barrier distributions

D_{QE} measurements performed at HIL and LNS

Transfer cross section measurements at HIL

New CCQEL code: the cases of ²⁴Mg + ⁹²Zr and ²⁰Ne + ²⁰⁸Pb

D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

Fusion and quasielastic barrier distributions

D_{QE} measurements performed at HIL and LNS

- Transfer cross section measurements at HIL
- New CCQEL code: the cases of ²⁴Mg + ⁹²Zr and ²⁰Ne + ²⁰⁸Pb
- D_{QE} of ²⁰Ne + ^{92,94,95}Mo
- Transfer measurement of ²⁰Ne + ^{92,94,95}Mo
- **Future plans: fusion**

Summary

Fusion and quasielastic barrier distributions

D_{QE} measurements performed at HIL and LNS

- Transfer cross section measurements at HIL
- New CCQEL code: the cases of ²⁴Mg + ⁹²Zr and ²⁰Ne + ²⁰⁸Pb
- D_{QE} of ²⁰Ne + ^{92,94,95}Mo
- Transfer measurement of ²⁰Ne + ^{92,94,95}Mo
- Future plans: fusion

Summary

Theoretically the two approaches are approximatelly complementary

Fusion and quasielastic barrier distributions

D_{QE} measurements performed at HIL and LNS

- Transfer cross section measurements at HIL
- New CCQEL code: the cases of ²⁴Mg + ⁹²Zr and ²⁰Ne + ²⁰⁸Pb
- D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

Theoretically the two approaches are approximatelly **complementary**

- D_{FUS}(E) : Detection of evaporation residues (ER) at forward angles (ER separation from residual beam)
- D_{QE}(E) : Detection of quasi-elastic channels at backward angles (chargeparticle detectors)

Fusion and quasielastic barrier distributions

D_{QE} measurements performed at HIL and LNS

- Transfer cross section measurements at HIL
- New CCQEL code: the cases of ²⁴Mg + ⁹²Zr and ²⁰Ne + ²⁰⁸Pb
- D_{QE} of ²⁰Ne + ^{92,94,95}Mo

(MeV⁻¹

Ω

55

- Transfer measurement of ²⁰Ne + ^{92,94,95}Mo
- Future plans: fusion

Summary

60

E_{cm}

 $\frac{1}{P = 1 - T}$ $\frac{T}{QUASI-ELASTIC}$ $D_{QE}(E) = -\frac{d}{dE} \left(\frac{\sigma_{QE}}{\sigma_{Parth}}\right)$

Theoretically the two approaches are approximatelly **complementary**

- D_{FUS}(E) : Detection of evaporation residues (ER) at forward angles (ER separation from residual beam)
- D_{QE}(E) : Detection of quasi-elastic channels at backward angles (**chargeparticle detectors**)
- D_{QE}(E) smaller experimental uncertainties above the Coulomb barrier
 - D_{FUS}(E) smaller experimental uncertainties below the Coulomb barrier
- D_{FUS}(E) better resolution

70

65

(MeV)

A. Stefanini and G. Montagnoli, Eur. Phys. J. A (2017) 53

Fusion and quasielastic barrier distributions

D_{QE} measurements performed at HIL and LNS

Transfer cross section measurements at HIL

```
New CCQEL code:
the cases of <sup>24</sup>Mg + <sup>92</sup>Zr
and <sup>20</sup>Ne + <sup>208</sup>Pb
```

D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

Theoretically the two approaches are approximatelly complementary

Coupled Channels (CC)

model takes into account strong collective excitations of the participating nuclei The role of dissipation by a multitude of **non-collective excitations** and different **transfer channels** is much less understood

Fusion and quasielastic barrier distributions

D_{QE} measurements performed at HIL and LNS

Transfer cross section measurements at HIL

```
New CCQEL code:
the cases of <sup>24</sup>Mg + <sup>92</sup>Zr
and <sup>20</sup>Ne + <sup>208</sup>Pb
```

```
D<sub>QE</sub> of <sup>20</sup>Ne + <sup>92,94,95</sup>Mo
```

```
Transfer measurement
of <sup>20</sup>Ne + <sup>92,94,95</sup>Mo
```

Future plans: fusion

Summary

²⁰Ne projectile - strongly deformed nucleus: $\beta_2 = 0.46$, $\beta_3 = 0.39$, $\beta_4 = 0.27$

Calculations carried out by the Coupled Channels (CC) method predict the distribution of barriers with a strong structure for all ²⁰Ne + X systems

Two peaks structure

Fusion and quasielastic barrier distributions

D_{QE} measurements performed at HIL and LNS

Transfer cross section measurements at HIL

New CCQEL code: the cases of ²⁴Mg + ⁹²Zr and ²⁰Ne + ²⁰⁸Pb

```
D<sub>QE</sub> of <sup>20</sup>Ne + <sup>92,94,95</sup>Mo
```

Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

²⁰Ne projectile - strongly deformed nucleus: $\beta_2 = 0.46$, $\beta_3 = 0.39$, $\beta_4 = 0.27$

E. Piasecki et al., Phys. Rev. C 80 (2009) 054613

Fusion and quasielastic barrier distributions

D_{QE} measurements performed at HIL and LNS

Transfer cross section measurements at HIL

New CCQEL code: the cases of ²⁴Mg + ⁹²Zr and ²⁰Ne + ²⁰⁸Pb

```
D<sub>OE</sub> of <sup>20</sup>Ne + <sup>92,94,95</sup>Mo
```

Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

²⁰Ne projectile - strongly deformed nucleus: $\beta_2 = 0.46$, $\beta_3 = 0.39$, $\beta_4 = 0.27$

E. Piasecki et al., Phys. Rev. C 80 (2009) 054613

Fusion and quasielastic barrier distributions

D_{QE} measurements performed at HIL and LNS

Transfer cross section measurements at HIL

New CCQEL code: the cases of ²⁴Mg + ⁹²Zr and ²⁰Ne + ²⁰⁸Pb

```
D<sub>QE</sub> of <sup>20</sup>Ne + <sup>92,94,95</sup>Mo
```

Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

²⁰Ne projectile - strongly deformed nucleus: $\beta_2 = 0.46$, $\beta_3 = 0.39$, $\beta_4 = 0.27$

Influence of single particle excitations on the smoothing of the barrier distribution

E. Piasecki et al., Phys. Rev. C 80 (2009) 054613

7

Fusion and quasielastic barrier distributions

D_{QE} measurements performed at HIL and LNS

Transfer cross section measurements at HIL

New CCQEL code: the cases of ²⁴Mg + ⁹²Zr and ²⁰Ne + ²⁰⁸Pb

```
D<sub>QE</sub> of <sup>20</sup>Ne + <sup>92,94,95</sup>Mo
```

Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

²⁰Ne projectile - strongly deformed nucleus: $\beta_2 = 0.46$, $\beta_3 = 0.39$, $\beta_4 = 0.27$

Influence of single particle excitations on the smoothing of the barrier distribution

Dissipation due to the coupling of a multitude of noncollective levels

E. Piasecki et al., Phys. Rev. C 100 (2019) 014616 S. Yusa et al., Phys. Rev. C 82 (2010) 024606 E. Piasecki et al., Phys. Rev. C 80 (2009) 054613

Fusion and quasielastic barrier distributions

D_{QE} measurements performed at HIL and LNS

Transfer cross section measurements at HIL

New CCQEL code: the cases of ²⁴Mg + ⁹²Zr and ²⁰Ne + ²⁰⁸Pb

D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

²⁴Mg projectile - also deformed nucleus (6 α particles) β_2 = 0.59, β_3 = 0.23, β_4 = -0.03

A. Trzcińska et al., Phys. Rev. , C 102 (2020) 034617

Fusion and quasielastic barrier distributions

D_{QE} measurements performed at HIL and LNS

Transfer cross section measurements at HIL

New CCQEL code: the cases of ²⁴Mg + ⁹²Zr and ²⁰Ne + ²⁰⁸Pb

D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

²⁴Mg projectile - also deformed nucleus (6 α particles) $\beta_2 = 0.59$, $\beta_3 = 0.23$, $\beta_4 = -0.03$

Experimental D_{QE} have much smoothed structure in comparison to CC calculations predictions

A. Trzcińska et al., Phys. Rev. , C 102 (2020) 034617

Fusion and quasielastic barrier distributions

D_{QE} measurements performed at HIL and LNS

Transfer cross section measurements at HIL

New CCQEL code: the cases of ²⁴Mg + ⁹²Zr and ²⁰Ne + ²⁰⁸Pb

D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

²⁴Mg projectile - also deformed nucleus (6 α particles) β_2 = 0.59, β_3 = 0.23, β_4 = -0.03

Experimental D_{QE} have much smoothed structure in comparison to CC calculations predictions

Structure almost disappears for ²⁴Mg + ⁹²Zr

A. Trzcińska et al., Phys. Rev. , C 102 (2020) 034617

Fusion and quasielastic barrier distributions

D_{QE} measurements performed at HIL and LNS

Transfer cross section measurements at HIL

New CCQEL code: the cases of ²⁴Mg + ⁹²Zr and ²⁰Ne + ²⁰⁸Pb

D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

²⁴Mg projectile - also deformed nucleus (6 α particles) β_2 = 0.59, β_3 = 0.23, β_4 = -0.03

Experimental D_{QE} have much smoothed structure in comparison to CC calculations predictions

Structure almost disappears for ²⁴Mg + ⁹²Zr

Coupling to noncollective included within CC+RMT model

Effects of dissipation due to the coupling of a multitude of noncollective levels

A. Trzcińska et al., Phys. Rev., C 102 (2020) 034617

Near barrier	fusion
reactions	

Fusion and quasielastic barrier distributions

D_{QE} measurements performed at HIL and LNS

Transfer cross section measurements at HIL

New CCQEL code: the cases of ²⁴Mg + ⁹²Zr and ²⁰Ne + ²⁰⁸Pb

D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

Influence of transfer channels

Fusion and quasielastic barrier distributions

D_{QE} measurements performed at HIL and LNS

Transfer cross section measurements at HIL

New CCQEL code: the cases of ²⁴Mg + ⁹²Zr and ²⁰Ne + ²⁰⁸Pb

D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

wy Ion Laborator

Influence of transfer channels

ICARE scattering chamber at HIL

Fusion and quasielastic barrier distributions

D_{QE} measurements performed at HIL and LNS

Transfer cross section measurements at HIL

New CCQEL code: the cases of ²⁴Mg + ⁹²Zr and ²⁰Ne + ²⁰⁸Pb

D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

Influence of transfer channels

ICARE scattering chamber at HIL

Transfers can play a significant role in the shape of barrier distributions, **but** in this case problably other mechanism is responsible for the very marked difference between the barrier distributions for the ^{90,92}Zr

Transfer cross-sections measurements of ²⁰Ne+^{90,92}Zr

Total transfer cross sections for the ⁹⁰Zr and ⁹²Zr targets are essentially the same (6% of the total quasielastic scattering)

E. Piasecki et al., Phys. Rev. , C 80 (2009) 054613

Influence of transfer channels

Transfer cross-sections measurements of ²⁴Mg+^{90,92}Zr

D. Wójcik et al., Acta Phys. Pol. , B 49 (2018), 387

²⁴Mg+⁹²Zr

Fusion and quasielastic barrier distributions

D_{QE} measurements performed at HIL and LNS

Transfer cross section measurements at HIL

New CCQEL code: the cases of ²⁴Mg + ⁹²Zr and ²⁰Ne + ²⁰⁸Pb

D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

•

Dissipation due to projectile - target transfers of light particles.

Standard CCQEL and CCFULL codes

- Transfer coupling form factor $F_{tr} * dV/dr$, where F_{tr} is fixed for a single Q_{gg} value
 - Only one transfer reaction included
 - Two neutrons transfer is the dominant channel

Upgraded CCQEL and CCFULL codes

- Transfer coupling form factor F_{tr} * dV/dr, where F_{tr}(Q) is extracted from experimental Q-distributions
- Several transfer reactions included

Fusion and quasielastic barrier distributions

0.2

0.15

0.1

0.05

0.25

0.2

0.15

0.1

0.05

0

σ_{tr} (mb/sr)

0

σ_{tr} (mb/sr)

D_{QE} measurements performed at HIL and LNS

Transfer cross section measurements at HIL

New CCQEL code: the cases of ²⁴Mg + ⁹²Zr and ²⁰Ne + ²⁰⁸Pb

D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

Dissipation due to projectile - target transfers of light particles.

Upgraded code applied to the ²⁴Mg+⁹²Zr system

Upgraded CCQEL and CCFULL codes

Transfer coupling form factor $F_{tr} * dV/dr$, where $F_{tr}(Q)$ is extracted from experimental Q-distributions

Fusion and quasielastic barrier distributions

0.2

0.15

0.1

0.05

0.25

0.2

0.15

0.1

0.05

0

σ_{tr} (mb/sr)

0

σ_{tr} (mb/sr)

D_{QE} measurements performed at HIL and LNS

Transfer cross section measurements at HIL

New CCQEL code: the cases of ²⁴Mg + ⁹²Zr and ²⁰Ne + ²⁰⁸Pb

D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

Dissipation due to projectile - target transfers of light particles.

Upgraded code applied to the ²⁴Mg+⁹²Zr system

Upgraded CCQEL and CCFULL codes

Transfer coupling form factor $F_{tr} * dV/dr$, where $F_{tr}(Q)$ is extracted from experimental Q-distributions

Fusion and quasielastic barrier distributions

D_{QE} measurements performed at HIL and LNS

Transfer cross section measurements at HIL

 σ_{tr} (mb/sr)

σ_{tr} (mb/sr)

New CCQEL code: the cases of ²⁴Mg + ⁹²Zr and ²⁰Ne + ²⁰⁸Pb

D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

Dissipation due to projectile - target transfers of light particles.

Upgraded code applied to the ²⁴Mg+⁹²Zr system

Upgraded CCQEL and CCFULL codes

Transfer coupling form factor $F_{tr} * dV/dr$, where $F_{tr}(Q)$ is extracted from experimental Q-distributions

Fusion and quasielastic barrier distributions

0.8

0.6

0.4

0.2

1.25

0.75

0.5

0.25

σ_{tr} (mb/sr)

σ_{tr} (mb/sr)

D_{QE} measurements performed at HIL and LNS

Transfer cross section measurements at HIL

New CCQEL code: the cases of ²⁴Mg + ⁹²Zr and ²⁰Ne + ²⁰⁸Pb

D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

Dissipation due to projectile - target transfers of light particles.

Upgraded code applied to the ²⁰Ne+²⁰⁸Pb system

Upgraded CCQEL and CCFULL codes

Fusion and quasielastic barrier distributions

D_{OF} measurements performed at HIL and LNS

Transfer cross section measurements at HIL

σ_{tr} (mb/sr)

σ_{tr} (mb/sr)

New CCQEL code: the cases of ${}^{24}Mg + {}^{92}Zr$ and ²⁰Ne + ²⁰⁸Pb

D_{OF} of ²⁰Ne + ^{92,94,95}Mo

Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

Dissipation due to projectile - target transfers of light particles.

Upgraded code applied to the ²⁰Ne+²⁰⁸Pb system

Upgraded CCQEL and CCFULL codes

Transfer coupling form factor $F_{tr} * dV/dr$, where $F_{tr}(Q)$ is extracted from

Fusion and quasielastic barrier distributions

D_{QE} measurements performed at HIL and LNS

Transfer cross section measurements at HIL

New CCQEL code: the cases of ²⁴Mg + ⁹²Zr and ²⁰Ne + ²⁰⁸Pb

D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

Dissipation due to projectile - target transfers of light particles.

Fusion and quasielastic barrier distributions

D_{QE} measurements performed at HIL and LNS

Transfer cross section measurements at HIL

New CCQEL code: the cases of ²⁴Mg + ⁹²Zr and ²⁰Ne + ²⁰⁸Pb

 $D_{QE} \text{ of } {}^{20}\text{Ne} + {}^{92,94,95}\text{Mo}$

Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

Quasielastic barrier distribution of ²⁰Ne+^{92,94,95}Mo

CUDAC (Coulomb Universal Detector Array Chamber) at HIL

- 30 PIN diodes (1cmx1cm) at the backward angles of 125°, 135°, 145°
- 4 PIN diodes the forward angles of 35°

- 92,94,95 MoO₃ targets of ~150 µg/cm² thickness (40 µg/cm² C backing);
- E_{lab} = 65 MeV, 70 MeV and 73 MeV;
- Ni and Au degraders for smaller energy steps.

Fusion and quasielastic barrier distributions

D_{QE} measurements performed at HIL and LNS

Transfer cross section measurements at HIL

New CCQEL code: the cases of ²⁴Mg + ⁹²Zr and ²⁰Ne + ²⁰⁸Pb

D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

Quasielastic barrier distribution of ²⁰Ne+^{92,94,95}Mo

Increasing of dissipation in a "controlled" way: observing the influence of increasing level density on D_{QE}

Fusion and quasielastic barrier distributions

D_{QE} measurements performed at HIL and LNS

Transfer cross section measurements at HIL

New CCQEL code: the cases of ²⁴Mg + ⁹²Zr and ²⁰Ne + ²⁰⁸Pb

Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

Quasielastic barrier distribution of ²⁰Ne+^{92,94,95}Mo

Fusion and quasielastic barrier distributions

D_{QE} measurements performed at HIL and LNS

Transfer cross section measurements at HIL

New CCQEL code: the cases of ²⁴Mg + ⁹²Zr and ²⁰Ne + ²⁰⁸Pb

 D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

Quasielastic barrier distribution of ²⁰Ne+^{92,94,95}Mo

Fusion and quasielastic barrier distributions

D_{QE} measurements performed at HIL and LNS

Transfer cross section measurements at HIL

New CCQEL code: the cases of ²⁴Mg + ⁹²Zr and ²⁰Ne + ²⁰⁸Pb

 D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

Quasielastic barrier distribution of ²⁰Ne+^{92,94,95}Mo

Possible significant differences in transfer channels between the isotopes.

19

Fusion and quasielastic barrier distributions

D_{QE} measurements performed at HIL and LNS

Transfer cross section measurements at HIL

New CCQEL code: the cases of ²⁴Mg + ⁹²Zr and ²⁰Ne + ²⁰⁸Pb

D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

Direct transfer cross-section measurements of the ²⁰Ne+^{92,94,95}**Mo**

- Comparison of the transfer cross sections for different transfer reaction of the neighbour isotopes
- Transfer cross-sections of the three systems at 4 beam energies in the range below and above the barrier

Fusion and quasielastic barrier distributions

D_{QE} measurements performed at HIL and LNS

Transfer cross section measurements at HIL

New CCQEL code: the cases of ²⁴Mg + ⁹²Zr and ²⁰Ne + ²⁰⁸Pb

D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

Beam energy and cross-section normalization

Direct transfer cross-section measurements of the ²⁰Ne+^{92,94,95}**Mo**

- Comparison of the transfer cross sections for different transfer reaction of the neighbour isotopes
- Transfer cross-sections of the three systems at 4 beam energies in the range below and above the barrier

Product identification in mass E – ToF

Product identification in \mathbf{Z} $\mathbf{E} - \Delta \mathbf{E}$

Fusion and quasielastic barrier distributions

D_{QE} measurements performed at HIL and LNS

Transfer cross section measurements at HIL

New CCQEL code: the cases of ²⁴Mg + ⁹²Zr and ²⁰Ne + ²⁰⁸Pb

D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

Direct transfer cross-section measurements of the ²⁰Ne+^{92,94,95}**Mo**

- Comparison of the transfer cross sections for different transfer reaction of the neighbour isotopes
- Transfer cross-sections of the three systems at 4 beam energies in the range below and above the barrier

Product identification in mass at the beam energy of 73 MeV

Fusion and quasielastic barrier distributions

D_{QE} measurements performed at HIL and LNS

Transfer cross section measurements at HIL

New CCQEL code: the cases of ²⁴Mg + ⁹²Zr and ²⁰Ne + ²⁰⁸Pb

D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

Direct transfer cross-section measurements of the ²⁰Ne+^{92,94,95}**Mo**

- Comparison of the transfer cross sections for different transfer reaction of the neighbour isotopes
- Transfer cross-sections of the three systems at 4 beam energies in the range below and above the barrier

Product identification in mass at the beam energy of 73 MeV

Fusion and quasielastic barrier distributions

D_{QE} measurements performed at HIL and LNS

Transfer cross section measurements at HIL

```
New CCQEL code:
the cases of <sup>24</sup>Mg + <sup>92</sup>Zr
and <sup>20</sup>Ne + <sup>208</sup>Pb
```

 D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

Fusion barrier distribution measurement through the direct detection of evaporation residues

J. X. Wei et al., NIM., A 306, (1991)

Based on set-up in use at ANU

(Australia)

Fusion and quasielastic barrier distributions

D_{QE} measurements performed at HIL and LNS

Transfer cross section measurements at HIL

```
New CCQEL code:
the cases of <sup>24</sup>Mg + <sup>92</sup>Zr
and <sup>20</sup>Ne + <sup>208</sup>Pb
```

 D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

Fusion barrier distribution measurement through the direct detection of evaporation residues

Based on set-up in use at ANU (Australia) Using a MCP and a Silicon detector

Fusion and quasielastic barrier distributions

D_{QE} measurements performed at HIL and LNS

Transfer cross section measurements at HIL

```
New CCQEL code:
the cases of <sup>24</sup>Mg + <sup>92</sup>Zr
and <sup>20</sup>Ne + <sup>208</sup>Pb
```

```
D<sub>QE</sub> of <sup>20</sup>Ne + <sup>92,94,95</sup>Mo
```

Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

Fusion barrier distribution measurement through the direct detection of evaporation residues

Fusion and quasielastic barrier distributions

D_{QE} measurements performed at HIL and LNS

Transfer cross section measurements at HIL

```
New CCQEL code:
the cases of <sup>24</sup>Mg + <sup>92</sup>Zr
and <sup>20</sup>Ne + <sup>208</sup>Pb
```

```
D<sub>QE</sub> of <sup>20</sup>Ne + <sup>92,94,95</sup>Mo
```

Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

Fusion barrier distribution measurement through the direct detection of evaporation residues

- Fusion and quasielastic barrier distributions
- **D**_{OF} measurements performed at HIL and LNS
- Transfer cross section measurements at HIL
- New CCQEL code: the cases of ²⁴Mg + ⁹²Zr and ²⁰Ne + ²⁰⁸Pb
- D_{OE} of ²⁰Ne + ^{92,94,95}Mo
- Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

Tests performed in the following condition:

- ²⁴Mg in the energy range 67-90 MeV on a • ⁹²Zr target
- Silicon strip detector DSSSD 64x64 mm² ٠
- MCP detector ٠
- Collimator before Wien Filter ٠

E. V. Pagano et al., LNS Activity Report 2018/2019 E. V. Pagano et al., LNS Activity Report 2020

(arb.

each electrode ±20 kV

Fusion and quasielastic barrier distributions

D_{OF} measurements performed at HIL and LNS

Transfer cross section measurements at HIL

New CCQEL code: the cases of ²⁴Mg + ⁹²Zr and ²⁰Ne + ²⁰⁸Pb

D_{OE} of ²⁰Ne + ^{92,94,95}Mo

Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

SiC position can be

set in the angular

range of 8° - 15°

and distance range

10 cm -15 cm

Slight change in the beam spot position on the target influences the detected angle and cross-section

Beam position from the ratios of the counting rates of ions hitting the detectors.

Beam monitoring system tested at HIL

- Active area 5x5 mm, thickness 80 µm (www.techjw.com)
- Radiation hardness around ~5 times larger than Si detector

E. Piasecki et al., HIL Aannual Report, A (2021) 25-27

- Near barrier fusion reactions
- Fusion and quasielastic barrier distributions
- D_{QE} measurements performed at HIL and LNS
- Transfer cross section measurements at HIL
- New CCQEL code: the cases of ²⁴Mg + ⁹²Zr and ²⁰Ne + ²⁰⁸Pb
- D_{QE} of ²⁰Ne + ^{92,94,95}Mo
- Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

- ³²S beam of 85 MeV (2 pnA)
- Targets ^{nat}Au (0.1 mg/cm²), ^{nat}Sn (0.1 mg/cm²) and ^{nat}Mo (0.6 mg/cm²)

Beam position stable in 7 h run with uncertainty of 0.15 mm (0.1°)

GUI application "BeamMon" visualizes online beam center's position (*by K. Piasecki*)

E. Piasecki et al., HIL Aannual Report, A (2021) 25-27

- Fusion and quasielastic barrier distributions
- D_{QE} measurements performed at HIL and LNS
- Transfer cross section measurements at HIL
- New CCQEL code: the cases of ²⁴Mg + ⁹²Zr and ²⁰Ne + ²⁰⁸Pb
- D_{QE} of ²⁰Ne + ^{92,94,95}Mo
- Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

Extend the study of dissipation to the direct fusion barrier distribution.

- Verify the degree of agreement between the direct and non-direct methods of the barrier distribution determination;
- Verify the agreement between experimental and calculated fusion excitation functions and barrier distributions when the non-collective excitations are included within the CC+RMT model;

 Verify the existence of Dissipative Fusion Enhancement (DFE), a phenomenon predicted by the CC+RMT model.

- Fusion and quasielastic barrier distributions
- D_{QE} measurements performed at HIL and LNS
- Transfer cross section measurements at HIL
- New CCQEL code: the cases of ²⁴Mg + ⁹²Zr and ²⁰Ne + ²⁰⁸Pb
- D_{QE} of ²⁰Ne + ^{92,94,95}Mo
- Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

Extend the study of dissipation to the direct fusion barrier distribution.

- Verify the degree of agreement between the direct and non-direct methods of the barrier distribution determination;
- Verify the agreement between experimental and calculated fusion excitation functions and barrier distributions when the non-collective excitations are included within the CC+RMT model;

 Verify the existence of Dissipative Fusion Enhancement (DFE), a phenomenon predicted by the CC+RMT model.

Fusion reaction experiment:

- at LNS of ²⁴Mg+^{90,92}Zr or +^{92,94,95}Mo or other systems of interest;
- at HIL of ${}^{20}Ne + {}^{90,92}Zr$, $+ {}^{58,60,61}Ni$ and $+ {}^{92,94,95}Mo$ or other systems of interest.

Fusion and quasielastic barrier distributions

D_{QE} measurements performed at HIL and LNS

Transfer cross section measurements at HIL

New CCQEL code: the cases of ²⁴Mg + ⁹²Zr and ²⁰Ne + ²⁰⁸Pb

D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Transfer measurement of ²⁰Ne + ^{92,94,95}Mo

Future plans: fusion

Summary

- Barrier distribution studies performed at HIL and LNS focus on the study of influence of dissipation due to weak but numerous non-collective excitations and transfer reactions on quasielastic barrier distribution D_{QE}
- This observation triggered a new theoretical approaches to describe the fusion (CC+RMT)
- An upgraded CCQEL/CCFULL codes able to include dissipation of kinetic energy due to several transfer reactions was developped
- Measurement $^{20}\rm{Ne}+^{92,94,95}\rm{Mo}$ clearly shows the influence of non-collective excitations on smoothing of $\rm{D}_{\rm QE}$
- Transfer cross section measurement of ²⁰Ne+^{92,94,95}Mo to clairify the role of transfer and upgrade the CCQEL code
- Future plans:
 - $_{\odot}\,$ studies of dissipation effect on $\sigma_{fus}(E)$ and D_{fus}
 - $\circ~$ direct fusion measurements with velocity filter in LNS
 - o employing the filter at HIL using the extension of ICARE chamber
 - further CC+RMT improvement

A. Trzcińska, E. Piasecki, G. Colucci, M. Kowalczyk, M. Kisieliński, M. Wolińska-Cichocka, B. Zalewski, J. Choiński, K. Hadyńska-Klęk, G. Jaworski, M. Matuszewski, J. Samorajczyk-Pyśk, A. Stolarz, A. Tucholski

Heavy Ion Laboratory, University of Warsaw, Warsaw, Poland

A. Barbon, L. Calabretta, G. Cardella, G. D'Agata, D. Dell'Aquila, E. De Filippo, S. De Luca, F. Favela, E. Geraci, B. Gnoffo, G. Lanzalone, I. Lombardo, C. Maiolino, N. S. Martorana, A. Pagano, E. V. Pagano, S. Pirrone, G. Politi, L. Quattrocchi, D. Rizzo, F. Rizzo, A. Russo, P. Russotto, A. Trifiro, M. Trimarchi, M. Vigilante, C. Zagami

Thank you for

your attention

Dip. di Fisica e Astronomia, Università di Catania, and INFN-LNS, Catania, Italy

G. Tiurin, W. Trzaska

University of Jyväskylä, Jyväskylä, Finland

Z. K. Czerski, R. Dubey

Institute of Physics, University of Szczecin, Szczecin, Poland

M. Kondzielska, K. Piasecki

Faculty of Physiscs, University of Warsaw, Warsaw, Poland

P. Koczoń, Y. Leifels, B. Lommel

GSI, Darmstadt, Germany

P. W. Wen, H. Jia, C. Lin, N. Ma, L. Yang

China Institute of Atomic Energy, Beijing, China

