

Punkt wyjścia: 2 Nukleony

- Potencjały realistyczne oparte o wymianę mezonów nukleonowe stopnie swobody (CD Bonn, Nijm I, Nijm II, AV18)
- CD Bonn + explicit Δ-izobar obliczenia metodą kanałów sprzężonych
- □ Chiral Effective Field Theory **ChEFT** rozwinięcie potencjału w potęgach v $(Q/\Lambda_{\chi})^{\nu}$, skala $\Lambda_{\chi} \approx 1$ GeV

Punkt wyjścia: 2 Nukleony

- bogata baza danych eksperymentalnych: ~3000 punktów dla pp poniżej 350 MeV
- analiza przesunięć fazowych phase shift analysis Nijmegen group (PWA93)
- wysoka jakość dopasowania: χ² bliskie 1

Układ 3 nukleonów

Przewidywania w oparciu potencjały NN:

- nie odtwarzają energii wiązania dla układów 3N, 4N i cięższych
- nie odtwarzają przekroju czynnego rozpraszania sprężystego d(N,N)d w zakresie minimum

Koncepcja siły 3-nukleonowej

Systematyczne podejście w ramach ChEFT

E. Stephan UŚl

Kolejny krok: układ 3 nukleonów

□ Modele 3NF:

□ Naturalnie pojawia się w rzędzie N2LO ChEFT:

	2N force	3N force	4N force	
LO	XH	—	—	(Q/∧ _x)⁰
NLO	ХЫАМЦ	—	_	(Q/∧ _X)²
N ² LO	허석	H+ HX X	—	(Q/∧ _x)³
N ³ LO	X 44 44	4 + X	† } ∤	(Q/۸ _X)4

3N i więcej...

• Energie wiązania:

✓ 3NF pomaga

	³ Н	³ He	⁴ He
Experiment	8.48	7.72	28.3
CD Bonn	8.01	7.29	26.3
NijmH	7.66	7.01	24.6
Av18	7.62	6.92	24.3
CD Bonn + TM99	8.48	7.73	29.2
NijmII + TM99	8.39	7.72	28.5
Av18 + TM99	8.48	7.76	28.8
Av18 + UIX	8.48	7.76	28.5
CC CD Bonn + A	8.36	7.64	28.4

E. Stephan UŚI

Modele of NN+3NF w obliczeniach dla jąder atomowych i materii jądrowej

- Energie wiązania i promienie jąder lekkich i o pośrednich masach
- Wkład od 3NFs (ChEFT) jest istotny w obliczeniach struktury powłok jąder neutrono-nadmiarowych
- … stabilność jąder bliskich linii odpadniecia (drip line) neutronu
- … wysycenie w materii jądrowej
- Stosowane potencjały powinny zostać starannie przetestowane w układach kilku nukleonów, gdzie możliwe są dokładne obliczenia obserwabli !

Układy 3N badania eksperymentalne

➢Procesy:

◆Rozpraszanie sprężyste: N + d → N + d
◆Breakup: N + d → N + N + N
◆procesy elektromagnetyczne

Obserwable:
 różniczkowy przekrój czynny
 wektorowe&tensorowe zdolnośći analizujące
 współczynniki transferu polaryzacji, korelacje

pAnalyzer Target p

Zakres energii - dlaczego "średnie" i co to właściwie oznacza?
 mierzalny wpływ 3NF
 poniżej progu na produkcję pionów - precyzyjne obliczenia do porównania

Techniki detekcji:
 spektrometry magnetyczne
 układy detekcyjne o znacznej akceptancji

E. Stephan UŚl

Experimental Facilities

AVF Cyclotron Facility

3N Systems Rozpraszanie sprężyste

pd and nd Elastic Scattering at 70-400 MeV/nucleon

- tzw. kompletny zestaw obserwabli pełna informacja dynamiczna przy danej energii
- Tylko część obserwabli zmierzona dokładnie i systematycznie (RIKEN/RCNP/IUCF/KVI)

obraz niekompletny

3N – Rozpraszanie sprężyste d-p 130 MeV Wektorowe & Tensorowe Zdolności Analizujące

Przekrój czynny - inne efekty dynamiczne ? Coulomb / relatywistyka

rozpraszanie sprężyste <u>N-d</u>

Komplementarne badania -Breakup

- trzy swobodne nukleony w stanie końcowym
- prawa zachowania E/p 4 równania
- 5 niezależnych zmiennych kinematycznych

¹H(d,pp)n, ²H(p,pp)n Różniczkowy rzekrój czynny 3NF+Coulomb / 3NF+Relatywistyczne

A.Deltuva et al., Phys. Rev. C80, 064002, (2009)

E. Stephan UŚl

p+d 200 MeV

Detektory o dużej akceptancji katowej

SALAD

✓140 ΔE-E telescopes
✓3 plane MWPC
→ angular acceptance:
θ = (12°, 38°), φ = (0°, 360°)

E. Stephan UŚl

BINA

✓ Wall - very similar to SALAD
 ✓ Ball - system of 149 phoswitches
 → angular acceptance: nearly 4π

¹H(d,pp)n, ²H(p,pp)n Eksperymenty w KVI

Experiment	dp130 +GeWall	dp100	dp160	pd135	pd190
Beam energy	130 MeV 65 MeV/ A	100 MeV 50 MeV/ A	160 MeV 80 MeV/ A	135 MeV	190 MeV
Average current	50 pA	8 pA	10 pA	10 pA	10 pA
Polarization	vector & tensor (7 states)	vector & tensor (5 states)	NO	vector (1 state)	vector (2 states)
Target	LH ₂	LH ₂	LH ₂	LD ₂	LD ₂
Detector	SALAD (GeWall-FZ- Juelich)	BINA	BINA	BINA	BINA

- 400-1000 punktów na observablę analiza dla siatki kątów emisji protonów i S
- równoczesny pomiar rozpraszania sprężystego normalizacja, polaryzacja
- trwa analiza części danych
- E. Stephan UŚl

Pomiary¹H(d,pp)n przy energii 130 MeV Przekrój czynny - wpływ 3NF

Faddeev calculations

Realistic NN potentials CD Bonn, Nijml, Nijmll, **Av18**

3NF models: TM99, UIX

Coupled channel pot.

CD Bonn (mod) $+ \Delta$

EFT/ChPT potentials

NNLO – 2N only

NNLO - 2N + 3N

Pomiary¹H(d,pp)n przy energii 130 MeV Przekrój czynny - wpływ 3NF i oddziaływania kulombowskiego

¹H(d,pp)n @ 130 MeV Tensorowa zdolność analizująca

Problem z TM99 3NF

E. Stephan UŚl

²H(p,pp)n @ 135 MeV Wektorowa (protonowa) zdolność analizująca

Eksperymentalne badanie ¹H(d,pp)n Przekroje czynne – efekty relatywistyczne

relatywistyczne (przerywane)

3N System - d+p Breakup Reaction WASA@COSY

Wiązka deuteronowa: 340, 380, 400 MeV (170, 190, 200 MeV/nucleon)

- Tarcza H pelletowa
- Detektor WASA
 - forward: 3°-18°
 - central: 20°-169°

Badania układów 3N w IFJ PAN BINA w Centrum Cyklotronowym Bronowice

Cyclotron Proteus C-235:

Breakup ²H(p,pp)n BINA @ CCB (maj-czerwiec 2016) Wiązka protonowa: 108, (135, 160) MeV Tarcza ciekła LD₂ BINA

E. Stephan UŚI

Breakup deuteronu w zderzeniu z protonem Współrzędne niezmiennicze

4-pędy:

•kanał wejściowy: proton p_{p} , deuteron $p_{d'}$ •kanał wyjściowy: protony p_{p1} , p_{p2} i neutron p_n

$$s_{pp} = (p_{p1} + p_{p2})^{2}$$

$$s_{pn} = (p_{p1} + p_{n})^{2}$$

$$t_{n} = (p_{d} / 2 - p_{n})^{2}$$

$$t_{p} = (p_{p} - p_{p2})^{2}$$

deuteron traktowany jak para protonneutron

E. Stephan UŚl

przejście do *intuicyjnych* wartości energii

$$E_{rel}^{pp} = \sqrt{s_{pp}} - 2m_p$$
$$E_{rel}^{pn} = \sqrt{s_{pn}} - m_p - m_n$$
$$E_{tr}^{p} = \frac{-t_p}{2m_p}$$
$$E_{tr}^{n} = \frac{-t_n}{2m_n}$$

FSI:

$$E_{rel}^{pp} = 0$$

$$E_{rel}^{pn} = 0$$

$$E_{tr}^{p} = 0$$

$$E_{tr}^{n} = 0$$

Breakup ¹H(d,pp)n przy energii 130 MeV przewidywany wpływ 3NF - współrzędne niezmiennicze

przekrój czynny
wybrany obszar kinematyki, dla którego są dane zmierzone detektorem SALAD
NN : AV18 + Coulomb
badany wpływ siły 3N: UrbanalX

•największy wpływ w pobliżu **pn FSI**

Układy 3N: Rozpraszanie sprężyste/Breakup Podsumowanie

	Rozpraszanie sprężyste p-d	Breakup deuteronu p-d
3NF - wpływ na przekrój czynny	znaczny, potwierdzony problem dla energii >100 MeV	znaczny, potwierdzony ? (pojawiają się efekty relatywistyczne)
3NF - obserwable polaryzacyjne	brak jednoznacznego potwierdzenia, czasem pogorszenie opisu	brak jednoznacznego potwierdzenia, czasem pogorszenie opisu
Coulomb - wpływ na przekrój czynny	praktycznie zaniedbywalny	istotny, blisko pp FSI dominujący, potwierdzony
efekty relatywistyczne	praktycznie zaniedbywalne	przewidywane znaczne, wymagają potwierdzenia eksperymentalnego
7		

E. Stephan UŚI

Układy 3N

oczekiwany rozwój obliczeń teoretycznych

□ ChPT

Obliczenia w rzędzie N3LO (pełne, czyli z uwzględnieniem grafów odpowiadających za siłę 3N)

Pełne obliczenia z 3NF, oddziaływaniem kulombowskim, przeprowadzone relatywistycznie

E. Stephan UŚI

Następny krok: układy 4N

- różnorodność kanałów reakcji
- możliwość badania zależności izospinowych
- potencjalnie większa (niż w 3N) czułość na 3NF
- obliczenia *ab initio*?
- rola 4NF?

H.C. Andersen *Krzesiwo*

Oczy jak:

- filiżanki
- młyńskie koło
- Okrągła Wieża

Warszawa 2017

E. Stephan UŚl

Następny krok: układy 4N

- IUCF
 - rozpraszanie sprężyste d+d przy energii 241 MeV
- KVI BBS
 - rozpraszanie sprężyste d+d przy energii 135 MeV
- KVI BINA
 - d+d -> d+p+n ; 135 MeV
 - d+d -> d+p+n ; 160 MeV
- Planowane (CCB):
 - $p+{}^{3}He \rightarrow d+p+p$ (i inne kanały)

