Studies of astrophysically-relevant nuclei around ⁷⁸Ni

Chiara Mazzocchi

Zakład Fizyki Jądrowej, IFD

Warszawa, December 8th, 2016

Overview

✓ Physics context and motivations:

- nuclear structure
- nuclear astrophysics
- ✓ Experimental approaches:
 - production of exotic nuclei near ⁷⁸Ni
 - detection methods
- ✓ Results & discussion:
 - b-decay gross properties measurements for the r-process
 - structure of nuclei north-east and south-west of ⁷⁸Ni
- ✓ Summary

the neighbourhood of ⁷⁸Ni

• ...

✓ Decay studies of very neutron-rich nuclei:

- understanding the evolution of nuclear structure
 - excited levels —> single-particle levels around shell gaps
 - β-strength function and its consequences
 - masses —> Q-values/separation energies

the neighbourhood of ⁷⁸Ni

- ✓ Decay studies of very neutron-rich nuclei:
 - β-decay properties for the analysis of post r-process isotopic distributions
 - half-lives
 - properties of β n emission
 - branching ratios (βγ, βn)
 - low-energy isomers
 - ...

β-decay properties for the analysis of post r-process isotopic distributions

✓ Decay studies of very neutron-rich nuclei:

- gross properties (mass, $T_{1/2}$, P_n) are often the only observables available
 - mass, $T_{1/2}$, P_n necessary input for this analysis
 - not possible to measure them in the lab for all the nuclei involved

-> reliable theoretical predictions needed

- models need to be verified
 - -> eventual modifications and improvements

- β half-life:

first decay property of an exotic nucleus experimentally accessible (only few ions needed!)

 \Rightarrow measuring $T_{1/2}$ provides the first test of models predictions

β-decay properties for the analysis of post r-process isotopic distributions

✓ Local tests for models before extension to *terra incognita*:

- most widely-used theoretical predictions:

global models —> calculate fundamental properties of all nuclei (out of necessity!)

- review of the predictive power of the global models:
 - large N/Z ratios originate effects not present closer to stability
 - N>50: models must include GT and *ff* transitions (neutrons in ⊕ parity orbitals and protons in ⊖ parity orbitals)
 - ordering of proton and neutron shells very important:
 ff transitions are a non-negligible portion of the β strength
- testing the validity of $T_{1/2}$ predictions is essential

(they used in network calculations when no experimental information exists)

β-decay properties for the analysis of post r-process isotopic distributions

✓ Local tests for models before extension to *terra incognita*:

- most widely-used theoretical predictions:

global models —> calculate fundamental properties of all nuclei (*out of necessity*!)

e.g.:

- FRDM+QRPA [Moeller 2003]:
 - FRDM + QRPA for GT part (& empirical spreading for quasiparticle strength) & gross theory for *ff* transitions
- CQRPA+DF3a [I. Borzov]:
 - + g.s. properties given by the DF3a energy density functional (tailored for n-rich nuclei around N=50)
 - + self-consistent calculation of beta-strength functions for GT and FF transitions
 - CQRPA approximation
 - new values of the masses in the region taken into account
 - + g.s. configurations in odd-A Ga (till A=83) blocked as $1f_{5/2}$ proton single-particle state
 - + not really global (only spherical nuclei calculated, but reliable within its range of applicability)

the neighbourhood of ⁷⁸Ni

- ✓ Production, separation & identification:
 - *Z* < 28 —> fragmentation
 - ⁸⁶Kr or ⁸²Se beam @ 140 A·MeV on Be target —> study of *n-rich Fe and Co isotopes*
 - in-flight separation of the fragments —> A1900 @ NSCL
 - identification event-by-event: ΔE vs ToF matrix

- ✓ Production, separation & identification:
 - *Z* < 28 —> fragmentation
 - ⁸⁶Kr or ⁸²Se beam @ 140 A·MeV on Be target —> study of *n-rich Fe and Co isotopes*
 - in-flight separation of the fragments —> A1900 @ NSCL
 - identification event-by-event: ΔE vs ToF matrix

- ✓ Production, separation & identification:
 - A~80 —> proton-induced fission
 - proton beam @ 54 MeV (~10 μ A) on ²³⁸UC_x target —> study of *n*-rich As and Ge isotopes
 - ion source chemistry + two-stage electromagnetic separation of the fragments
 - —> HRIBF @ ORNL

HRIBF: proton-induced fission of ²³⁸U

- neutron-rich nuclei (Z=29-63)
- large production rates

LeRibbs measuring station

beam

-

- \checkmark Detection set-up: β and γ spectroscopy
 - @NSCL: separated ions implanted into DSSD detector
 - ion and β particle detection + correlation in software
 - βγ coincidences detected through the SeGA array

- \checkmark Detection set-up: β and γ spectroscopy
 - @LeRibbs: purified sample implanted into tape in the centre of experimental set-up
 - movable tape periodically removed long-lived activity
 - 2 plastic scintillators and 4 clovers for β and γ detection
 - decay radiation measured during beam-on (grown-in) and beam-deflected-away (decay)

Half-life measurement of Fe and Co isotopes

Time distribution of β s

Fit function:

Half-life measurement of Fe and Co isotopes

LOG scale!

Half-lives & the weak r-process

✓ potential impact on r-process:

- astrophysical site(s) of r-process are still unknown
- astrophysical conditions that produce lighter nuclei (A~80) are rather uncertain

- weak r-process calculations:

parametrised neutrino wind that reasonably reproduces solar r-process abundance

- FRDM+QRPA calculations:

- off by at least factor 5
- uncertainty in rates —>> uncertainty in final abundance pattern

Half-lives & the weak r-process

final abundance Y(A)

final abund. with $T_{1/2}$ (th) increased x5 [Y_{incr}(A)] final abund. with $T_{1/2}$ (th) decreased x5 [Y_{decr}(A)] final abund. with $T_{1/2}$ (exp) scaled solar abund. [+]

Half-lives & the weak r-process

final abund. with $T_{1/2}$ (th) increased x5 [Y_{incr}(A)] final abund. with $T_{1/2}$ (th) decreased x5 [Y_{decr}(A)]

final abund. with $T_{1/2}(exp)$

scaled solar abund. [+]

Calculations: R. Surman (in C.M., R. Surman, et al., PRC88 (2013) 064320)

Half-lives of fission fragments

Time distribution of $\beta\gamma$ s with respect to the grow-in and decay cycle

Fit function:

$$A \cdot \left(1 - e^{-\lambda t}\right)$$
 grow-in
 $A \cdot \left(1 - e^{-\lambda t}\right) \cdot e^{-\lambda (t - t_0)}$ decay

Half-lives of fission fragments: benchmarking theoretical predictions

LOG scale!

Zn & Ga

- ✓ FRDM+QRPA:
 - longer T_{1/2} than measured
- ✓ DF3a+CQRPA calculations:
 - reproduce well experimental values
 - systematically much longer than FRDM at N=55
 - for Ga isotopes $T_{1/2}$ stabilization for N≥56

M. Madurga et al., PRL 109 (2012) 112501 C.M. et al., PRC 87 (2013) 034315 K. Miernik et al., PRL 111 (2013) 132502

Benchmarking theoretical predictions

- ✓ Review of the predictive power of the global models for the n-rich portion of the chart-of nuclei
 - Zn, Ga, Ge and As isotopes: FRDM(+QRPA) overestimates $T_{1/2}$ by large factors

- ✓ Study of the impact of the new $T_{1/2}$ on the r-process nucleosynthesis calculations:
 - T_{1/2}s influence the abundances in the 75<A<90 region & impact how the r-process proceeds for heavier nuclei
 - replacing FRDM+QRPA with DF3a+CQRPA calculations improves predictions for production of nuclei for A>140

Benchmarking theoretical predictions: half-life measurement of As and Ge isotopes

Benchmarking theoretical predictions: half-life measurement of As and Ge isotopes

Ge

- ✓ FRDM+QRPA give longer half-lives
- ✓ CQRPA calculations:
 - reproduce well experimental values
 - provide robust prediction for ⁸⁶Ge
 - predict T_{1/2} stabilisation for A≥86, N≥54 +
 become systematically longer than FRDM

- ✓ FRDM+QRPA gives better agreement
- ✓ CQRPA calculations:
 - reproduce well new exp. value for ⁸⁴As
 - predict T_{1/2} stabilisation for N≥54 (systematically longer than FRDM)
 - worse agreement for ^{86,87}As → (rapid) onset of collectivity leaving N=50, Z=28 shell closures?

β-decay of ⁸⁶Ge

C.M. et al., PRC 92 (2015) 054317

β-decay of ⁸⁶Ge

C.M. et al., PRC 92 (2015) 054317

β-decay of ⁸⁶Ge

Single-particle description:

- ✓ "Valence" neutrons cannot decay via allowed GT transitions between spin orbit partners —> spectators
- ✓ Particle-hole excitations lead to population of high energy states
- ✓ Important role of forbidden transitions (∆l>0 and parity changing)

β decay of N>50 isotopes:

 \checkmark competition between

- forbidden transitions with large Q_{β} (small strength) & allowed GT decays to highly excited states (very fragmented)
- ✓ exotic nuclei —> GT decay dominant —> large P_n
- ✓ fpg neutrons —> spin-orbit partner proton orbital

 \checkmark d_{5/2} and s_{1/2} neutrons as spectators

B(GT) calculations:

- ✓ Nushellx (parallel processing version) with ⁵⁶Ni core
- ✓ *jj44bpn* interaction for *fpg* [Lisetskiy &Brown]
- ✓ N=50 shell gap parameter of the model
- ✓ $d_{5/2}$ neutrons "blocked" for B(GT) calculations
- ✓ s.p. energies from experimental systematics (Grawe)
- ✓ protons and neutrons in *fpg* orbitals allowed to scatter without restrictions
 (f_{5/2}, p_{3/2}, p_{1/2}, g_{9/2} for protons, f_{5/2}, p_{3/2}, p_{1/2}, g_{9/2} + d_{5/2} for neutrons
- ✓ good description of N<50 isotopes (empirical adjustments) and decent job for Ga isotopes
 [M. Alshudifat, R. Grzywacz et al., PRC93 (2016) 044325]

calculations: decay dominated by $vp_{1/2} \rightarrow \pi p_{3/2} => strongly bound 1^+$

calculations: decay dominated by $vp_{1/2} \rightarrow \pi p_{3/2} => strongly bound 1^+$

Summary

Thanks! to

Experiments @ ORNL

P. Bączyk I.N. Borzov C.R. Bingham N.T. Brewer C.J. Gross R. Grzywacz C. Jost

M. Karny A. Korgul M. Madurga A.J. Mendez II K. Miernik D. Miller S. Padgett

S.V. Paulauskas K.P. Rykaczewski A.A. Sonzogni D.W. Stracener M. Wolińska-Cichocka

J.C. Batchelder C.R. Bingham I.N. Borzov D. Fong R. Grzywacz J.H. Hamilton J.K. Hwang

M. Karny W. Królas S.N. Liddick P.F. Mantica A.C. Morton W. F. Mueller K.P. Rykaczewski

Experiment @ NSCL

M. Steiner R. Surman A. Stolz J.A. Winger