Chirality and wobbling in nuclei: new achievements and perspectives

France: K.K. Zheng, A. Astier, CP
China: S. Guo, B.F. Lv (Lanzhou),
J. Meng, P. W. Zhao, Z. H. Zhang et al. (Peking), Y. Liu (Huzhou), F.Q. Chen (Xi'An),
Z. P. Li (Chongqing)

Finland: P. Greenlees, J. Uusitalo, J. Pakarinen et al. Italy: D. Mengoni et al.
South Africa: E. Lawrie et al.
Poland: J. Srebrny, A. Tucholski et al.
Sweden: B. Cederwall et al.
Hungary: J. Timar, I. Kuti, D. Sohler
Canada: C. Andreoiu et al.
Germany: Q.B. Chen
USA: S. Frauendorf

Three successful experiments

RITU + JUROGAM II - 2016 (12 articles: 10 published, 2 submitted)
${ }^{136} \mathrm{Nd}$ - chirality (3), triaxiality (1), HD bands (1), octupole correlations (1), 2-qp wobbling (1 submitted)
${ }^{135} \mathrm{Nd}$ - chirality (1), TiP (1 submitted)
${ }^{137} \mathrm{Nd}$ - chirality (1), oblate rotation at the highest spins (2)

GALILEO+EUCLIDES+N WALL - 2017 (7 articles: 4 published, 3 submitted)
${ }^{130} \mathrm{Ba}$ - diversity of shapes and rotations (1), high-K isomer (1), 2-qp wobbling (1), detailed spectroscopy (1 submitted)
${ }^{131} \mathrm{Ba}$ - chirality (1), detailed spectroscopy (2 to be submitted)

EAGLE+plunger - 2016 (1 article)
${ }^{136} \mathrm{Nd}$ - lifetime of the 10^{+}states

JUROGAM II + RITU, ${ }^{40} \mathrm{Ar}+{ }^{100} \mathrm{Mo} \quad \mathrm{Nd}$ 20 pnA, 1 week, October 2016

Chiral mode

Chiral Geometry in Nuclei

Mutually orthogonal coupling of three angular momenta in odd-odd nuclei

NEW (2018):

Chirality in even-even nuclei

First observation of five chiral doublets

 in one nucleus:apotheosis of chirality in the even-even ${ }^{136} \mathrm{Nd}$ nucleus

CP, B.F. Lv, et al.
PRC 97 (2018) 041304(R)

Ultimate chirality : clear evidence in even-even nuclei

CP, B.F. Lv et al, PRC 97 (2018) 041304(R)

Chiral

${ }^{136} \mathrm{Nd}$ - D2 chiral doublet

$\pi h^{3}(\rho \mathrm{~B})^{-1} \otimes v \Gamma^{21}(\mathrm{sd})^{-1}$

${ }^{136} \mathrm{Nd}$ - TAC-CDFT calculations by Meng's group

Multiple chiral doublets in four- j shells particle rotor model: Five possible chiral doublets in ${ }_{60}^{136} \mathrm{Nd}_{76}$
Q.B. Chen ${ }^{\text {a }}$, B.F. Lv ${ }^{\text {b }}$, C.M. Petrache ${ }^{\text {b }}$, J. Meng ${ }^{\text {c,d,e,* }}$

Physics Letters B 782 (2018) 744-749

Numerical details

- Configuration: $\pi\left(\mathbf{1 h}_{11 / 2}\right)^{2}\left(\mathbf{1 g}_{7 / 2}\right)^{-2} v\left(\mathbf{1 h}_{11 / 2}\right)^{-1}\left(\mathbf{1 f}_{7 / 2}\right)^{1}$
- Deformation: $\left(\beta=0.26, \gamma=23.0^{\circ}\right)$
- Irr. MOI: $\mathfrak{J}=40 \mathrm{MeV}$
- Coriolis attenuation factor: 0.93

${ }^{136} \mathrm{Nd}$ - chiral doublet D5

Multiple chiral bands in ${ }^{135} \mathrm{Nd}$ B.F. Lv et al - PRC 100 (2019) 024314

$v\left(\Gamma_{11 / 2}\right)^{-1} \pi\left(g_{7 / 2} h_{11 / 2}\right)$

$\mathrm{M} \times \mathrm{D}$ in ${ }^{137} \mathrm{Nd}$
CP et al, EPJA 56 (2020)

$v\left(h_{11 / 2}\right)^{-1} \pi\left(h_{11 / 2}\right)^{2}$

Evidence for pseudospin-chiral quartet bands in the presence of

 octupole correlationsS. Guo ${ }^{\text {a,b,* }, ~ C . M . ~ P e t r a c h e ~}{ }^{\mathrm{c}, *}$, D. Mengoni ${ }^{\text {d,e }}$, Y.H. Qiang ${ }^{\text {a }}$, Y.P. Wang ${ }^{\text {f }}$, Y.Y. Wang ${ }^{f}$, J. Meng ${ }^{\text {f,g }}$, Y.K. Wang ${ }^{f}$, S.Q. Zhang ${ }^{f}$, P.W. Zhao ${ }^{f}$, A. Astier ${ }^{\text {c }}$, J.G. Wang ${ }^{\text {a,b }}$, H.L. Fan ${ }^{\text {a }}$, E. Dupont ${ }^{\mathrm{c}}$, B.F. Lv $^{\mathrm{c}}$, D. Bazzacco ${ }^{\mathrm{d}, \mathrm{e}}$, A. Boso ${ }^{\text {d,e }}$, A. Goasduff ${ }^{\text {d,e }}$, F. Recchia ${ }^{\text {d,e }}$, D. Testov ${ }^{\text {d,e }}$, F. Galtarossa ${ }^{\text {h,i }}$, G. Jaworski ${ }^{\text {h }}$, D.R. Napoli ${ }^{\text {h }}$, S. Riccetto ${ }^{\text {h }}$, M. Siciliano ${ }^{\text {h }}$, J.J. Valiente-Dobon ${ }^{\text {h }}$, M.L. Liu ${ }^{\text {a,b }}$, G.S. Li $^{\text {a,b }}$, X.H. Zhou ${ }^{\text {a,b }}$, Y.H. Zhang ${ }^{\mathrm{a}, \mathrm{b}}$, C. Andreoiu ${ }^{\mathrm{j}}$, F.H. Garcia ${ }^{j}$, K. Ortner ${ }^{j}$, K. Whitmore ${ }^{j}$, A. Ataç-Nyberg ${ }^{k}$, T. Bäck ${ }^{k}$, B. Cederwall ${ }^{k}$, E.A. Lawrie ${ }^{1, \mathrm{~m}}$, I. Kuti $^{\text {n }}$, D. Sohler ${ }^{\text {n }}$, T. Marchlewski ${ }^{\circ}$, J. Srebrny ${ }^{0}$, A. Tucholski ${ }^{\circ}$

Physics Letters B 807 (2020) 135572
Chiral bands
 Chiral bands

Selection rules of electromagnetic

 transitions for chirality－parity violation in atomic nuclei
Science Bulletin

Volume 65，Issue 23， 15 December 2020，Pages 2001－2006

Multiple chiral doublet bands with octupole correlations in reflection－asymmetric triaxial particle rotor model Y．Y．Wang（王媛媛）${ }^{\text {a }}$ ，S．Q．Zhang（张双全）${ }^{\text {b }}$ ，P．W．Zhao（赵鹏巍 ${ }^{\text {b }}$ ，J．Meng（孟杰）$)^{\text {b，a，，，＊}}$

New quantum numbers

New chiral bands in $A=130$ region

B.W. Xiong, Y.Y. Wang, ADNDT 125 (2018) 193: Nuclear chiral bands data tables

Wobbling outside of the A=160 mass region

- high-spin 2-qp bands: YES
 - low-spin 1-qp bands: NO

Wobbling bands - theoretical predictions and calculations

> 1975, Bohr-Mottelson, Chapter 4, States with large $\mathrm{I}\left(\mathrm{I}^{2} \gg \mathrm{I}_{2}{ }^{2}+\mathrm{I}_{3}{ }^{2}\right)$

High spins
γ-rigid
Rigid MOI
Shimizu 1995
Hamamoto 2002
Matsuzaki 2003
Tanabe 2006
Oi 2006
Raduta 2020
and many others

```
Low spins
\gamma-rigid
Rigid & Hydrodynamic MOI
Frauendorf-Dönau 2014
Chen }201
Tanabe 2017
Budaca 2018
Qi 2020
\gamma-soft
Casten 2003
and many others
```


Reported wobbling bands

Risk of misinterpretation of low-spin bands in odd-even nuclei as wobbling bands instead of Tilted Precession (TiP) bands

Wobbling at low spins? => questionable from both experimental and theoretical points of view
Tilted Precession at low spins - YES (1 PRC submitted)
${ }^{135} \mathrm{Nd}$ - TiP bands (1 PRC submitted)
${ }^{135} \mathrm{Pr}$ - questionable experimental results (1 PRC comment submitted)
${ }^{133} \mathrm{La}$ - questionable experimental results (1 comment in preparation)
${ }^{187} \mathrm{Au}$ - questionable experimental results (1 article in preparation)
${ }^{183} \mathrm{Au},{ }^{127} \mathrm{Xe},{ }^{105} \mathrm{Pd}$ - questionable wobbling interpretation

2-qp wobbling at high spins? => Maybe YES
${ }^{130} \mathrm{Ba}$ - 2-qp wobbling (1 PLB)
${ }^{136} \mathrm{Nd}-2-\mathrm{q}$ p wobbling (1 PRC submitted)

Wobbling of 2-qp bands at high spins

PHYSICAL REVIEW C 100, 061301(R) (2019)

 Transverse wobbling in an even-even nucleus ${ }^{130} \mathrm{Ba}$Q. B. Chen $\odot,^{1,{ }^{*}}$ S. Frauendorf, ${ }^{2, \dagger}$ and C. M. Petrache ${ }^{3, \dagger}$

TABLE I. Experimental and theoretical mixing ratios δ as well as the transition probability ratios $B(M 1)_{\text {out }} / B(E 2)_{\text {in }}$ and
$B(E 2)_{\text {out }} / B(E 2)_{\text {in }}$ for the transitions from band Sl^{\prime} to band S 1 of ${ }^{130} \mathrm{Ba}$.

$$
5^{+}
$$

${ }^{130} \mathrm{Ba}$ $\xrightarrow[\underbrace{2}_{\mathrm{z}}]{\substack{\mathrm{x}}}$ S1 S2o-high

Diversity of shapes and rotations in the γ-soft ${ }^{130}$ Ba nucleus: First observation of a t-band in the $A=130$ mass region
C.M. Petrache ${ }^{\text {a,*, P.M. Walker }}{ }^{\text {b }}$, S. Guo ${ }^{\text {c,d,*, Q.B. Chen }}{ }^{\text {e }}$, S. Frauendorf ${ }^{\text {f , YX. Liu }}$ g, R.A. Wyss ${ }^{h}$, D. Mengoni ${ }^{1}$, Y.H. Qiang ${ }^{\text {c }}$, A. Astier ${ }^{\text {a }}$, E. Dupont ${ }^{\text {a }}$, R. Li ${ }^{\text {a }}$, B.F. Lv ${ }^{\text {a }}$, K.K. Zheng ${ }^{\text {a }}$, D. Bazzacco ${ }^{i}$, A. Boso ${ }^{i}$, A. Goasduff ${ }^{1}$, F. Recchia ${ }^{i}$, D. Testov ${ }^{i}$, F. Galtarossa ${ }^{j}$, G. Jaworski ${ }^{j}$, D.R. Napoli ${ }^{j}$, S. Riccetto ${ }^{j}$, M. Siciliano ${ }^{j, k}$, J.J. Valiente-Dobon ${ }^{j}$, M.L. Liu ${ }^{\text {c,d }}$, X.H. Zhou ${ }^{\text {c, }}$, , J.G. Wang ${ }^{\text {c }}$, C. Andreoiu ${ }^{1}$, F.H. Garcia ${ }^{1}$, K. Ortner ${ }^{1}$, K. Whitmore ${ }^{1}$, T. Bäck ${ }^{\text {h }}$, B. Cederwall ${ }^{\text {h }}$, E.A. Lawrie ${ }^{\text {m}}$, I. Kuti ${ }^{\text {n }}$, D. Sohler ${ }^{\text {n }}$, J. Timár ${ }^{\text {n }}$, T. Marchlewski ${ }^{\circ}$, J. Srebrny ${ }^{\circ}$, A. Tucholski ${ }^{\circ}$

|Microscopic investigation on the existence of transverse wobbling under the effect of rotational alignment: the ${ }^{136} \mathrm{Nd}$ case

Fang-Qi Chen ${ }^{1}$ and C. M. Petrache ${ }^{2}$
${ }^{1}$ School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China ${ }^{2}$ Centre de Sciences Nucléaires et Sciences de la Matière, CNRS/IN2P3, Université Paris-Saclay, Bâtiment 104-108, 91405 Orsay, France (Dated: November 11, 2020)

The even- and odd-spin two-quasiparticle yrast bands in ${ }^{136} \mathrm{Nd}$ are investigated with the triaxial projected shell model, focusing on the possible interpretation as transverse wobbling. With the experimental observables reproduced reasonably, the conditions under which the wobbling approximation is valid are examined via the angular momentum geometry and the configuration components extracted from the microscopic wave functions. The impact of the rotational alignment of the quasiparticles on the scenario of transverse wobbling is emphasized. It turns out that the $n=0$ band of the wobbling candidate is more affected than the $n=1$ one, which tends to go against the decreasing trend of the wobbling energy expected in the transverse case.

?

Wobbling 1-qp bands at low spins

- questionable
- high risk of misinterpretation

${ }^{135} \mathrm{Pr}$

Revolving towards the medium axis No stable transverse geometry !!!

Tanabe, PRC 95 (2017)

PHYSICAL REVIEW C 101, 034306 (2020)

Tilted precession and wobbling in triaxial nuclei

E. A. Lawrie $\odot,{ }^{1,2, *}$ O. Shirinda $\odot,^{1,{ }^{\dagger}}$ and C. M. Petrache $\odot^{3,{ }^{3}}$

The wobbling approximation is valid if the rotational angular momenta around the two axes with lower MoI is small [16]:

$$
\begin{equation*}
I_{2}^{2}+I_{3}^{2} \ll I^{2}, \tag{15}
\end{equation*}
$$

a condition that can be rewritten as

$$
\begin{equation*}
f(n, I)=(2 n+1) \frac{\left(A_{2}+A_{3}-2 A_{1}\right)}{2 I \sqrt{\left(A_{2}-A_{1}\right)\left(A_{3}-A_{1}\right)}} \ll 1 \tag{16}
\end{equation*}
$$

$A_{1}=1, A_{2}=4$, and $A_{3}=4$ are used

Longitudinal
(d)

> Transverse

| (a) | (b) | |
| :--- | :--- | :--- | :--- |
| (d) | | |

Tilted precession bands in ${ }^{135} \mathrm{Nd}$

B. F. Lv, ${ }^{1}$ C. M. Petrache, ${ }^{2, *}$ E. A. Lawrie,,${ }^{3,4}$ A. Astier, ${ }^{2}$ E. Dupont, ${ }^{2}$ K. K. Zheng, ${ }^{1,2}$ P. Greenlees, ${ }^{5}$ H. Badran, ${ }^{5}$ T. Calverley, ${ }^{5,6}$ D. M. Cox, ${ }^{5, \dagger}$ T. Grahn, ${ }^{5}$ J. Hilton,,${ }^{5,6}$ R. Julin, ${ }^{5}$ S. Juutinen,,${ }^{5}$ J. Konki, ${ }^{5,}{ }^{\ddagger}$ J. Pakarinen, ${ }^{5}$ P. Papadakis, ${ }^{5}$ § J. Partanen, ${ }^{5}$ P. Rahkila, ${ }^{5}$ P. Ruotsalainen, ${ }^{5}$ M. Sandzelius, ${ }^{5}$ J. Saren, ${ }^{5}$ C. Scholey, ${ }^{5}$ J. Sorri,,${ }^{5,7}$ S. Stolze, ${ }^{5}$, J. Uusitalo, ${ }^{5}$ B. Cederwall, ${ }^{8}$ A. Ertoprak, ${ }^{8}$ H. Liu, ${ }^{8}$ S. Guo, ${ }^{1}$ J. G. Wang, ${ }^{1}$ H. J. Ong, ${ }^{1}$ X. H. Zhou, ${ }^{1}$ I. Kuti, ${ }^{9}$ J. Timár, ${ }^{9}$ A. Tucholski, ${ }^{10}$ J. Srebrny, ${ }^{10}$ and C. Andreoiu ${ }^{11}$

$\Delta \mathrm{I}=1$ band, increasing $\mathrm{R}_{\\|}$	(a)	(b)	(c)
$\Delta \mathrm{I}=2$ band, increasing R_{\perp}	(d)	(e)	

PRM calculations by E. Lawrie

Problems with experimental results

Not easy to extract convincing mixing ratios from angular distributions of transitions with 10\% relative intensities!

Polarization asymmetry has very large errors for weak transitions!

Matta, PRL 2015
Sensharma, PLB 2019
135P
135P

Signature Partner

Biswas, EPJA 2019

Problems on ${ }^{135} \mathrm{Pr}$

Credit to Guo Song, IMP Lanzhou

* -0.16 was repoted in the text, but -0.46 is obtained by fitting the reported curve

Comment on "Erratum: Negative-parity high-spin states and a possible magnetic rotation band in ${ }_{59}^{135} \mathrm{Pr}_{76}$ [Phys. Rev. C 92, 054325 (2015)]"
S. Guo (郭松) ${ }^{1,2}$ and C. M. Petrache ${ }^{3}$

FIG. 2. (Color online) The old and new polarization asymmetry values, in comparison with the deduced ones assuming only the geometry asymmetry is changed.

FIG. 1. (Color online) Geometry asymmetry as functions of transition energy.
${ }^{\urcorner}$ABLE I. γ-ray energy, polarization asymmetry (Δ) rat nd deduced ratios between the counts of parallel and p endicular scattering (R).

$E_{\gamma}(\mathrm{keV})$	$\Delta_{\text {old }}$	$\Delta_{\text {new }}$	$\Delta_{\text {deduced }}$	$R_{\text {old }}$	$R_{\text {new }}$
325.1	$-0.12(6)$	$-0.01(3)$	-0.078	0.845	0.968
332.9	$-0.03(8)$	$-0.01(3)$	0.013	1.013	0.968
372.8	$0.08(4)$	$0.11(1)$	0.122	1.262	1.232
410.8	$-0.16(10)$	$-0.11(3)$	-0.118	0.779	0.792
424.0	$-0.15(9)$	$-0.05(6)$	-0.108	0.795	0.893
429.7	$-0.05(6)$	$-0.04(4)$	-0.007	0.973	0.911
498.5	$-0.14(7)$	$-0.13(8)$	-0.098	0.811	0.760
593.7	$-0.13(12)$	$-0.02(3)$	-0.088	0.828	0.948
660.2	$0.06(3)$	$0.09(1)$	0.102	1.213	1.182
688.8	$0.07(6)$	$0.04(4)$	0.112	1.237	1.069
747.5	$-0.05(3)$	$0.03(3)$	-0.007	0.973	1.048
776.2	$0.15(12)$	$0.07(8)$	0.192	1.455	1.136
813.3	$-0.2(8)$	$0.04(3)$	-0.159	0.717	1.069
834.0	$0.24(14)$	$0.13(4)$	0.280	1.754	1.282
854.0	$0.09(6)$	$0.13(1)$	0.132	1.288	1.282
870.8	$0.12(10)$	$0.1(5)$	0.162	1.369	1.206
999.9	$0.12(6)$	$0.08(3)$	0.162	1.369	1.158
1075.2	$0.22(12)$	$0.08(5)$	0.261	1.682	1.158
1197.4	$0.12(11)$	$0.05(4)$	0.162	1.369	1.090
1225.9	$0.11(7)$	$0.09(5)$	0.152	1.341	1.182
1363.7	$0.09(5)$	$0.08(5)$	0.133	1.288	1.158

Comment on＂Longitudinal wobbling in ${ }^{133}$ La［Eur．Phys．J．A 55， 159 （2019）］＂
W．Hua（滑伟），${ }^{1}$ S．Guo（郭松），${ }^{2,3, *}$ C．M．Petrache，${ }^{4}$

${ }^{133}$ La

Zero background！
$31 / 2^{-}$

Asymmetry correction（a）
$\cos (\theta)$

No wobbling in ${ }^{187} \mathrm{Au}$!

Longitudinal Wobbling Motion in ${ }^{187} \mathbf{A u}$

N. Sensharma, ${ }^{1}$ U. Garg, ${ }^{1}$ Q. B. Chen, ${ }^{2}$ S. Frauendorf, ${ }^{1}$ D. P. Burdette, ${ }^{1}$ J. L. Cozzi, ${ }^{1}$ K. B. Howard, ${ }^{1}$ S. Zhu, ${ }^{10}$ M. P. Carpenter, ${ }^{3}$ P. Copp, ${ }^{3}$ F. G. Kondev, ${ }^{3}$ T. Lauritsen, ${ }^{3}$ J. Li, ${ }^{3}$ D. Seweryniak, ${ }^{3}$ J. Wu, ${ }^{3}$ A. D. Ayangeakaa, ${ }^{4}$ D. J. Hartley, ${ }^{4}$ R. V. F. Janssens, ${ }^{5,6}$ A. M. Forney, ${ }^{7}$ W. B. Walters, ${ }^{7}$ S. S. Ghugre, ${ }^{8}$ and R. Palit ${ }^{9}$

PTRM calculations for ${ }^{187} \mathrm{Au}$:
 different 1-qp configurations, not wobbling bands!

