W poszukiwaniu jądrowych izomerów kształtu (In search of nuclear shape isomers)

Bogdan Fornal

Institute of Nuclear Physics,Polish Academy of Sciences Krakow, Poland

Collaboration with: University of Milan and INFN Milan, Italy Universite libre de Bruxelles, Belgium IFIN HH and ELI, Bucharest, Romania University of Tokyo, Japan

Plan

- Introduction
- Fission isomers shape isomers.
- Shape coexistence vs. shape isomerism.
- Model predictions of secondary minima in the nuclear potential energy surfaces (PES).
- Candidates for deep minima in PES.
- Experiment exploration of decay from the secondary PES minima in ⁶⁶Ni.
- Summary

Potential energy surface (PES) (molecules)

Complex molecule

Q₁ O - H bond length

HOH

Representation of potential energy surface by two-dimensional contour

Parametrization of the nuclear shape

$$R(\theta,\varphi) = R_0 [1 + \sum_{l,m} a_{lm} Y_{lm}(\theta,\varphi)]$$

In case we consider only quadrupole deformation $a_{20} = \beta \cos \gamma$ $a_{22} = (1/\sqrt{2})\beta \sin \gamma$

Potential energy surface (PES) of a nucleus

Already in **1953**, **Hill** and **Wheeler** discussed possible consequences of the existence of two well separated minima in the potential energy surface for the ground state of the system.

1961 - discovery of the first spontaneously fissioning isomer in ²⁴²Am with a half-life 14 msec.

C. M. Polikanov et al., Zh. Eksp. Teor. Fiz. 42, 1464 (1962) [Sov. Phys.- JETP 15, 1016 (1962)].

234Bk	235Bk	236Bk	237B⊾	238Bk	239Bk	240Bk	241Bk	242Bk	243Bk	244Bk	245Bk	246Bk	247Bk	248Bk	249Bk	250Bk
233Cm	234Cm	235Cm	236Ст	237Cm	238Cm	239Cm	240Cm	241Cm	242Cm	243Cm	244Cm	245Cm	246Ст	247Cm	248Cm	249Cm
232An	1 233Am	234Am	235Am	236Am	237Am	238Am	239Am	240Am	241 Am	242Am	243Am	244Am	245Am	246Ат	247 Am	248Am
231Pu	232Pu	233Pu	234Pu	235Pu	236Pu	237Pu	238Pu	239Pu	240Pu	241Pu	242Pu	24 3Pu	244Pu	245Pu	246Ри	247Pu
230Np	231Np	232Np	233Np	234 N p	235Np	236Np	237Np	238 N p	239Np	240 N p	241 N D	242 № ₽	24 3 N p	244 N p	245 N D	
229U	230U	231U	232U	233U	234U	235U	236U	237U	238U	239U	240U	241U	242U	24 3 U		
228Pa	229Pa	230Pa	231Pa	232Pa	233Pa	234Pa	235Pa	236Pa	237Pa	238Pa	239Pa	240Pa	241Pa			
227Th	228Th	229Th	230Th	231Th	232Th	233Th	234Th	235Th	236Th	237Th	238Th	239Th				
226 Ac	227 Ac	228Ac	229Ac	230Ac	231 Ac	232Ac	233Ac	234Ac	235Ac	236Ac	237Ac					

SOVIET PHYSICS USPEKHI VOLUME 11, NUMBER 1 JULY-AUGUST 1968

1968

SPONTANEOUSLY FISSIONING ISOMERS

S. M. POLIKANOV Joint Institute for Nuclear Research, Dubna Usp. Fiz. Nauk 94, 43-62 (January, 1968) SOVIET PHYSICS USPEKHI VOLUME 15, NUMBER 4 JANUARY-FEBRUARY 1973

539.144.7

Physics of Our Days

1973

NUCLEAR SHAPE ISOMERS

S. M. POLIKANOV

Joint Institute for Nuclear Research, Dubna

Usp. Fiz. Nauk 107, 685-704 (August, 1974)

Deformation

Deformation

Shape isomers in actinides

- HIGH Potential BARRIER
- Nucleus trapped In the second minimum
- Spontaneous fission from the second minimum

234Bk	235Bk	236Bk	237Bk	238Bk	239Bk	240Bk	241Bk	242Bk	243Bk	244Bk	245Bk	246Bk	247Bk	248Bk	249Bk	250Bk
233Cm	234Cm	235Cm	236Ст	237Ст	238Cm	239Ст	240Cm	241Cm	242Cm	243Cm	244Cm	245Cm	246Ст	247Ст	248Cm	249Cm
232Am	233Am	234Am	235Am	236Am	237Am	238Am	239Am	240Am	241 Am	242Am	243Am	244Am	245Am	246Ат	247 Am	248Am
231Pu	232Pu	233Pu	234Pu	235Pu	236Pu	237Pu	238Pu	2 39 Pu	240Pu	241Pu	242Pu	243Pu	244Pu	245Pu	246Ри	247Pu
230Np	231Np	232 N p	233Np	234 N p	235 N p	236Np	237 №	238 N p	239Np	240 N p	241Np	242 N p	24 3Np	244 № ₽	245 N p	
229U	230U	231U	232U	233U	234U	2350	236U	. 3717	238U	139U	240U	241U	242U	243U		
228Pa	229Pa	230Pa	231Pa	232Pa	233Pa	234Pa	00074	236Pa	63778	238Pa	239Pa	240Pa	241Pa			
227Th	228Th	229Th	230Th	231Th	232Th	233Th	234Th	235 1 'h	2361 h	237Th	238Th	239Th				
226Ac	227Ac	228Ac	229Ac	230Ac	231 Ac	232Ac	233Ac	234Ac	35Aa	236Ac	237Ac					

TWO EXCEPTIONS

SHAPE ISOMERS:

- HIGH Potential BARRIER
- Nucleus trapped In the minimum
- very retarded photon decay (**10⁷ hindrance**)

Can OTHER (lighter) nuclei exhibit these features ?

Shape coexistence in atomic nuclei (appearence of different shapes at low excitation energy) K. Heyde and J. L. Wood, Rev. Mod. Phys. 83, 1467 (2011)

REVIEWS OF MODERN PHYSICS, VOLUME 83, OCTOBER-DECEMBER 2011

Shape coexistence in atomic nuclei

Kris Heyde*

Department of Physics and Astronomy, Ghent University, Proeftuinstraat 86, B-9000 Gent, Belgium

John L. Wood[†]

School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA

(published 30 November 2011; publisher error corrected 6 December 2011)

The status of shape coexistence in nuclei has evolved:

- i) from an exotic rarity (1980'),
- ii) via the perception that it is a phenomenon which exhibits "islands of occurrence" (1990')

iii) to the current position in which it seems to occur in all (but the lightest) nuclei.

Journal of Physics 6: Nuclear and Particle Physics J. Phys. G: Nucl. Part. Phys. 43 (2016) 020402 (4pp) CoossMark A focus on shape coexistence in nuclei edited by: K Heyde and J L Wood Unique and complementary information on shape coexistence in the neutron-deficient Pb region derived from Coulomb excitation K Wrzosek-Lipska and L P Gaffney		OPEN ACCESS	2016							
J. Phys. G: Nucl. Part. Phys. 43 (2016) 020402 (4pp) doi:10.1088/0954.3899/43/2/020402 Editorial Editorial A focus on shape coexistence in nuclei edited by: K Heyde and J L Wood Unique and complementary information on shape coexistence in the neutron-deficient Pb region derived from Coulomb excitation K Wrzosek-Lipska and L P Gaffney		IOP Publishing	Journal of Physics G: Nuclear and Particle Physics							
Editorial Constant A focus on shape coexistence in nuclei edited by: K Heyde and J L Wood edited by: K Heyde and J L Wood edited by: K Heyde and J L Wood Unique and complementary information on shape coexistence in the neutron-deficient Pb region derived from Coulomb excitation K Wrzosek-Lipska and L P Gaffney		J. Phys. G: Nucl. Part. Phys. 43 (2016) 020402	2 (4pp) doi:10.1088/0954-3899/43/2/020402							
A focus on shape coexistence in nuclei edited by: K Heyde and J L Wood		Editorial								
edited by: K Heyde and J L Wood		A focus on shape	e coexistence in nuclei							
Unique and complementary information on shape coexistence in the neutron-deficient Pb region derived from Coulomb excitation K Wrzosek-Lipska and L P Gaffney		edited by: K Heyde and J L Wood								
Unique and complementary information on shape coexistence in the neutron-deficient Pb region derived from Coulomb excitation K Wrzosek-Lipska and L P Gaffney										
Unique and complementary information on shape coexistence in the neutron-deficient Pb region derived from Coulomb excitation K Wrzosek-Lipska and L P Gaffney										
Unique and complementary information on shape coexistence in the neutron-deficient Pb region derived from Coulomb excitation K Wrzosek-Lipska and L P Gaffney										
Unique and complementary information on shape coexistence in the neutron-deficient Pb region derived from Coulomb excitation K Wrzosek-Lipska and L P Gaffney										
derived from Coulomb excitation K Wrzosek-Lipska and L P Gaffney	Unique and	complementary information	n on shape coexistence in the neutron-de	eficient Pb regior						
K Wrzosek-Lipska and L P Gaffney	derived from	n Coulomb excitation								
	K Wrzosek-	Lipska and L P Gaffney								

.

1997 Nuclear Physics A 617 (1997) 282-315 NUCLEAR PHYSICS A

Equilibrium shapes and high-spin properties of the neutron-rich $A \approx 100$ nuclei

J. Skalski^{a,b}, S. Mizutori^{a,c}, W. Nazarewicz^{c,d,e} J. Skalski, S. Mizutori, W. Nazarewicz

E. Clément, M. Zielińska (J. Iwanicki, P. Napiorkowski, J. Srebrny, K. Wrzosek-Lipska) *et al.*, Phys.Rev. Lett. 116, 022701 (2016)

Hartree-Fock-Bogoliubov Predictions for Shape Isomerism in Nonfissile Even-Even Nuclei

M. Girod, J. P. Delaroche, D. Gogny, and J. F. Berger, PRL 64 (1989) 2452

SUPERDEFORMATION AND SHAPE ISOMERISM AT ZERO SPIN (Microscopic Hartree-Fock plus BCS calculations)

P. Bonche et al., Nucl. Phys. A 500 (1989) 308

Nuclear Physics A500 (1989) 308-322 North-Holland, Amsterdam

SUPERDEFORMATION AND SHAPE ISOMERISM AT ZERO SPIN*

P. BONCHE¹, S.J. KRIEGER, P. QUENTIN² and M.S. WEISS

Department of Physics, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

J. MEYER, M. MEYER and N. REDON

Institut de Physique Nucléaire (et IN2P3), Université Lyon 1, F-69622 Villeurbanne Cedex, France

H. FLOCARD

Division de Physique Théorique³, Institut de Physique Nucléaire, F-91406 Orsay Cedex, France

P.-H. HEENEN⁴

Physique Nucléaire Théorique, Université Libre de Bruxelles, CP 229, B-1050 Brussels, Belgium

Received 7 March 1989

Candidates for the presence of deep, secondary minima:

⁶⁶Ni, ⁶⁸Ni, ^{190,192}Pt, ^{206,208,210}Os, ^{194,196,214}Hg

Macro-Microscospic Model – P. Moeller et al., 2012 Global Calculation Searching for secondary PES minima Study of 7206 nuclei from A=31 to A=209

Global Calculation of Nuclear Shape Isomers P. Moeller et al., Phys. Rev. Lett. 103, (2009) 212501

Nuclear Shape Isomers P. Moeller et al., Atomic Data and Nuclear Data Tables 98 (2012) 149

MONTE CARLO SHELL MODEL Calculations Takaharu Otsuka's Group, Univ. of Tokyo

MONTE CARLO SHELL MODEL Calculations Takaharu Otsuka's Group, Univ. of Tokyo

Predictions of four models

Microscopic Hartree-Fock-Bogoliubov

Microscopic Hartree-Fock plus BCS

Monte Carlo Shell Model

Macro-Microscospic Model

Decay Scheme of ⁶⁶Ni:

R. Broda et al., Phys. Rev. C 86, 064312 (2012).

⁶⁴Ni(t,p)⁶⁶Ni

W. Darcey, R. Chapman and S. Hinds Nuclear Physics A170 (1971) 253

⁶⁶Co β decay

Our Recent Bucharest Experiment: ¹⁸O + ⁶4Ni → ¹⁶O + ⁶⁶Ni (1 MeV below Coulomb Barrier)

GRAZING – A. Winter, N. Pollarolo

ROmanian array for SPectroscopy in HEavy ion REactions

Mixed array with

- **14 50% HPGe detectors** with BGO shields (IFIN-HH)
- 11 LaBr₃(Ce) scintillators: currently 7 of 2"x2" (IFIN-HH) and 4 of 1.5"x2" (UK)

25 positions, 5 symmetric rings of 5 detectors

Absolute HPGe efficiency: $\sim 1.1\%$

 $LaBr_3(Ce)$ efficiency ~ 1.75%

Our Recent Bucharest Experiment:

¹⁸O + ⁶⁴Ni → ¹⁶O + ⁶⁶Ni (1 MeV below Coulomb Barrier)

⁶⁶Ni

⁶⁶Ni

Perspectives: precision measurements

- Coulomb Excitation
- Electric Monopole Transition Strength $0_+ \rightarrow 0_+$ Electron Spectroscopy

66

- Search for Off Yrast Stractures gamma Spectroscopy
 - e.g. CLUSTER Transfer, Multi-Nucleon Transfer, ...

Summary

A shape-isomer-like state has been found in the ⁶⁶Ni nucleus. It is the lightest, ever, atomic nucleus exhibiting a photon decay hindered by a nuclear shape change.

Our finding, caught through high resolution gamma-ray spectroscopy and a very selective nuclear reaction mechanism, shows that shape isomerism is characteristic not only for very heavy nuclei. This will certainly be helpful for solving a puzzle on the origin of nuclear deformation.

Ş

Multifaceted Quadruplet of Low-Lying Spin-Zero States in ⁶⁶Ni: Emergence of Shape Isomerism in Light Nuclei

S. Leoni,^{1,2,*} B. Fornal,³ N. Mărginean,⁴ M. Sferraza,⁵ Y. Tsunoda,⁶ T. Otsuka,^{6,7,8,9} G. Bocchi,^{1,2} F. C. L. Crespi,^{1,2} A. Bracco,^{1,2} S. Aydin,¹⁰ M. Boromiza,^{4,11} D. Bucurescu,⁴ N. Cieplicka-Oryňczak,^{2,3} C. Costache,⁴ S. Călinescu,⁴ N. Florea,⁴ D. G. Ghiţă,⁴ T. Glodariu,⁴ A. Ionescu,^{4,11} Ł.W. Iskra,³ M. Krzysiek,³ R. Mărginean,⁴ C. Mihai,⁴ R. E. Mihai,⁴ A. Mitu,⁴ A. Negreţ,⁴ C. R. Niţă,⁴ A. Olăcel,⁴ A. Oprea,⁴ S. Pascu,⁴ P. Petkov,⁴ C. Petrone,⁴ G. Porzio,^{1,2} A. Şerban,^{4,11} C. Sotty,⁴ L. Stan,⁴ I. Ştiru,⁴ L. Stroe,⁴ R. Şuvăilă,⁴ S. Toma,⁴ A. Turturică,⁴ S. Ujeniuc,⁴ and C. A. Ur¹²

University of Milano and INFN sez. Milano, Italy Institute of Nuclear Physics, PAN, Krakow, Poland Departement de Physique, Universite libre de Bruxelles, Belgium IFIN HH, Bucharest, Romania Center for Nuclear Study, University of Tokyo, Japan University of Bucharest, Romania Extreme Light Infrastructure—Nuclear Physics, IFIN-HH, Bucharest, Romania