Własności neutronowo nadmiarowych izotopów z obszaru od niobu do srebra, o liczbach masowych 107 – 119;

w tym zagadki rozpadu beta, własności stanów izomerycznych, deformacje stanów jądrowych.

Wyniki badań eksperymentalnych wykonanych w Laboratorium Cyklotronowym Uniwersytetu w Jyvaskyla

Plan seminarium

- 0. Motywacja
- 1. Krótkie omówienie metod eksperymentalnych
- 2. Podsumowanie dotychczasowych badań
- 3. Wyniki badań rozpadu beta ¹¹⁷Rh -> ¹¹⁷Pd
- 4. Rozpad beta izotopów omawianego obszaru
- 5. Własności stanów wzbudzonych izotopów palladu o liczbach masowych 110 117
- 6. Deformacja izotopów palladu
- 7. Przygotowywane publikacje i plany na przyszłość

NUCLEAR PHYSICS A

Equilibrium shapes and high-spin properties of the neutron-rich $A \approx 100$ nuclei

Nuclear Physics A 617 (1997) 282-315

J. Skalski ^{a,b}, S. Mizutori ^{a,c}, W. Nazarewicz ^{c,d,e} ^a Joint Institute for Heavy-Ion Research, Oak Ridge National Laboratory, PO. Box 2008, Oak Ridge, TN 37831, USA ^b Soltan Institute for Nuclear Studies, ul. Hoża 69, PL-00681 Warsaw, Poland ^c Physics Division, Oak Ridge National Laboratory, PO. Box 2008, Oak Ridge, TN 37831, USA ^d Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA ^e Institute of Theoretical Physics, Warsaw University, ul. Hoża 69, PL-00681 Warsaw, Poland

Received 19 February 1997

Deformation B2

Me

inergy

THE EUROPEAN

PHYSICAL JOURNAL A

Equilibrium deformations and moments, potential energy surfaces, microscopic structure of coexisting configurations, and shape transitions in the heavy-Zr region have been calculated by many authors [35–85]. In most cases, calculations show large deformations in Sr, Zr, and Mo isotopes with $N \ge 60$. However, the details of the shape transition near N = 58 is predicted differently by various models, the onset and rapidity of this transition being very sensitive to the model [2].

Eur. Phys. J. A **24**, 161–165 (2005) DOI 10.1140/epja/i2004-10140-7

Letter

First observation of excited states in the ^{111}Tc nucleus —A new region of deformation at 40 \leq Z \leq 46, N \geq 68?

W. Urban^{1,a}, T. Rząca-Urban¹, J.L. Durell², A.G. Smith², and I. Ahmad³

¹ Faculty of Physics, Warsaw University, ul. Hoża 69, 00-681 Warsaw, Poland

 $^2\,$ Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK

³ Argonne National Laboratory, Argonne, IL 60439, USA

Fig. 1. Approximate regions of nuclear deformations and the approximate position of the r-process path in the 28 < Z < 50, 50 < N < 82 region. To the right, the distance, ΔN , from the stability line to the path, is shown for various isotopes.

PHYSICAL REVIEW C, VOLUME 65, 021303 (2001) Oblate stability of A~110 nuclei near the r-process path

F. R. XU, P. M. WALKER, AND R. WYSS

FIG. 1. The calculated single-neutron (top) and single-proton (bottom) levels of the Woods-Saxon potential. Axial symmetry is assumed with $\beta_4 = -|\beta_2|/6$ which gives approximately the hexade-capole value of the ground states obtained from the TRS calculations. Positive (negative) parity is indicated by solid (dashed) lines.

Even-even A \approx 110 nuclei approaching the astrophysical r-process path have been investigated using both the cranked and the configuration-constrained shell models. The calculations show that, with increasing neutron number in the Z \geq 40 nuclides, nuclear shapes evolve from prolate, through triaxial to oblate deformations.

NuDat 2.7

Search and plot nuclear structure and decay data interactively. More.

Levels and Gammas Search

Ground and excited states (energy, T_{1/2}, spin/parity, decay modes), gamma rays (energy, intensity, multipolarity, coinc.) Nuclear Wallet Cards Search Latest Ground and isomeric states properties

z	113In	114In	115In	116In	117In	118In	119In	120In	121In	122In	123In	124In	125In	
	112Cd	113Cd	114Cd	115Cd	116Cd	117Cd	118Cd	119Cd	120Cd	121Cd	122Cd	123Cd	124Cd	
47	111Ag	112Ag	113Ag	114Ag	115Ag	116Ag	117Ag	118Ag	119Ag	120Ag	121Ag	122Ag	123Ag	
	110Pd	111Pd	112Pd	113Pd	114Pd	115Pd	116Pd	11 217Pd	118Pd	1113,19Pd	120Pd	121Pd	122Pd	
45	109Rh	110Rh	111Rh	112Rh	11.3Rh	114Rh	115Rh	116Rh	17Rh	118Rh	119Rh	120Rh	121Rh	
	108Ru	109Ru	110Ru	111Ru	112Ra	TI 3Ru	11 4R .	115Ru	116Ru	117Ru	118Ru	119Ru	120Ru	
43	107Tc	108Tc	109Tc	110Tc	111Tc	112Tc	N.3Tc	14Tc	115Tc	116Tc	117Tc	118Tc	119Tc	
	106Mo	107Mo	108Mo	09Mo	110Mo`	111Mo	112Mo	113Mo	114Mo	115Mo	116Mo	117Mo	118Mo	
41	105Nb	106Nb	AD7Nb	108Nb	109Nb	110Nb	111Nb	112Nb	113Nb	114Nb	115Nb		> 1 10 10	Seconds .0+15 1/ +10 1/ +07 1/
	64		66		68		70		72		74		71 10 10 10 10 10 10	+05 1 +04 1 +03 1 +02 1 +01 1 +00 <

First decay scheme of ¹¹³Tc and identification of ¹¹³Ru^m

J.Kurpeta, G. Lersonneau, J.C. Wang, P.Dendooven, A. Honkanen, M. Huhta, M. Oinonen, H. Penttilä, K. Peräjärvi, J.R. Persson, A. Płochocki, J. Äystö Eur. Phys. J A 2 (1998) 241-243

Low-spin structure of ¹¹³Ru and ¹¹³Rh

J. Kurpeta, W. Urban, Ch. Droste, A. Płochocki, S.G. Rohoziński, T. Rząca-Urban, T. Morek, L. Próchniak, Beta + sf + obliczenia K. Starosta, J. Äystö, H. Penttilä, J.L. Durell, A.G. Smith, G. Lhersonneau, and I. Ahmad Eur. Phys. J. A 33, 307–316 (2007)

Penning trap assisted decay spectroscopy of neutron-rich ¹¹⁵Ru

J. Kurpeta, V.-V. Elomaa, T. Eronen, J. Hakala, A. Jokinen, P. Karvonen, I. Moore, H. Penttila, A. Płochocki, S. Rahaman, S. Rinta-Antila, J. Rissanen, J. Ronkainen, A. Saastamoinen T. Sonoda,W. Urban, Ch. Weber, and J. Aysto Eur. Phys J. A 31 (2007) 263-266

Signatures of oblate deformation in the ¹¹¹Tc nucleus

J. Kurpeta, W. Urban, A. Płochocki, J. Rissanen, J. A. Pinston, V.-V. Elomaa, T. Eronen,
J. Hakala, A. Jokinen, A. Kankainen, P. Karvonen, I. D. Moore, H. Penttila, A. Saastamoinen,
C. Weber and J. Aysto
Phys. Rev. C 84 (2011) 044304 1-4

Decay study of ¹¹⁴Tc with a Penning trap

J. Rissanen, J. Kurpeta, V.-V. Elomaa, T. Eronen, J. Hakala, A. Jokinen, I. D. Moore, P. Karvonen, A. Płochocki, L. Próchniak, H. Penttilä, S. Rahaman, M. Reponen, A. Saastamoinen, J. Szerypo, W. Urban, C. Weber, and J. Äystö Phys. Rev. C 83, 011301(R) – Published 7 January 2011;

doktorat

Penning-trap-assisted study of excitations in ^{88}Br populated in β decay of ^{88}Se

M. Czerwiński, K. Sieja, T. Rząca-Urban, W. Urban, A. Płochocki, J. Kurpeta, J. Wiśniewski, H. Penttilä, A. Jokinen, S. Rinta-Antila, L. Canete, T. Eronen, J. Hakala, A. Kankainen, V. S. Kolhinen, J. Koponen, I. D. Moore, I. Pohjalainen, J. Reinikainen, V. Simutkin, A. Voss, I. Murray, and C. Nobs Phys. Rev. C 95, 024321 – Published 22 February 2017 Uzupełnienie doktoratu

Pierwszy pomiar z pułapką Penninga

PHYSICAL REVIEW C 98, 024318 (2018)

Excited levels in the multishaped ¹¹⁷Pd nucleus studied via β decay of ¹¹⁷Rh

J. Kurpeta,¹ A. Płochocki,¹ W. Urban,¹ T. Eronen,² A. Jokinen,² A. Kankainen,² V. S. Kolhinen,³ I. D. Moore,² H. Penttilä,² M. Pomorski,¹ S. Rinta-Antila,² T. Rząca-Urban,¹ and J. Wiśniewski¹ ¹Faculty of Physics, University of Warsaw, ul. Pasteura 5, PL-02-093 Warsaw, Poland ²Department of Physics, University of Jyväskylä, P.O. Box. 35, FIN-40351, Jyväskylä, Finland ³Cyclotron Institute, Texas A&M University, 3366 TAMU, College Station, Texas 77843-3366, USA

(Received 28 June 2018; published 27 August 2018)

$\frac{(7/2^+)}{117}$	<u>421 m</u> Rh	is β-	-) =	750	7																1	1914.5	5	1 / 00 1	1.60 (5/2 ⁺	7/2+	<u>9/2</u> +)	
45 1023.2	0./%			ζβ (7/2+ 9	9/2 ⁺)																1	1033.5	;	808.1	(5/2+	7/2+	<u>9/2</u> +)	
929.3	493.7		Ą	C	7/2+ 9	9/2+)							В										C	0					
849.0	612.3			(7/2+ 9	9/2 ⁺)	838.6	473.9 707.0												6120	(7/2+9	9/2+	<u>)</u>						
770.0		334.5		(7/2+ 9	9/2 ⁺)	× 744.6	2000	507.7 423.4	380.2 228.1										519.1	(5/2+ 7	7/2+	.)						
627.4		390.8	306.1	C	7/2+ 9	9/2 ⁺)	632.1			205 5	67.2 67.2	8.00					0	5 193.9	76.3 140.6 7	/ .004	(7/2 ⁺)		641.0	433.5		(5/2	7/2+)	
544.4	Ш		412.9	307.7	5/2+ 2	7/2 ⁺)	601.7 - 555.6		#		Ĩ	423.5	81.9	0.62	95.5 51.9	08.8	348.7	Î Î Î		Ħ	$(5/2^+)$ $(5/2^+)$	7/2+	[)]						
435.6				401.0	198.9	5/2 ⁺ 7/	(2 ⁺)		╢	i			4 (ĨĨ	ĪĪ	Ĩ	Ì		t	Ħ	(3/2)								
321.2 (7	7/2 ⁺)				286.6	189.4 84.6	364.7 (5/2 321.3 (5/2	+) +)		330.1																			
236.7 (5	5/2 ⁺)						236.7 202.1 104.9								+						225.4	17.8	190.9			266.	8.6	<u>4</u> (9/	<u>2</u>)
131.7							131.7								(5/2	<u>)</u>	<u>'</u>	<u>'</u>	(3/2+	- 207.7	Ħ		± (3/2 +) 203.	2 9	77) 73	2_)
34.6								97.0	0.40										(3/2+	2	07.7							,+,
0.0								,														1		·				(1/2	;)

¹¹⁷Pd

$E_{lev}[keV]$	I_{β}	$\log ft$	$ E_{lev}[keV] $	Iβ	$\log ft$
0.0	0.0		555.6	2.9(0.4)	6.0
34.6	0.1 (2.1)	7.8	601.7	4.3(0.5)	5.9
131.7	0 - 4.6	≥ 6.0	627.4	1.8(0.3)	6.2
203.2	$\leq 19.2 \ (1.2)$	≥ 5.3	632.1	2.7(0.4)	6.0
207.7	0.0		641.0	0.8(0.2)	6.6
225.4	3.7 (0.8)	6.0	744.6	3.4(0.4)	5.9
236.7	7.4 (1.0)	5.7	770.0	0.7(0.1)	6.6
266.5	1.9 (0.2)	6.3	838.6	1.0(0.3)	6.4
321.2	5.9(0.6)	5.8	849.0	0.3(0.1)	6.9
321.3	2.0 (0.3)	6.3	929.3	0.4(0.1)	6.8
364.7	1.9 (0.7)	6.3	1023.2	0.4(0.1)	6.8
435.6	3.2(0.5)	6.0	1033.5	0.4(0.1)	6.7
516.5	27.7 (1.7)	5.1	1914.5	0.8(0.1)	6.2
544.4	2.5(0.3)	6.1			

117Rh 7/2+ Q=7527 keV T=421 ms

5/2+,7/2+,9/2+ 5/2-,7/2-,9/2-

Izotop	105Pd	107Pd	109Pd	111Pd	113Pd	115Pd	117Pd
Energia poziomu 5/2+	318.9	302.7	326.9	275.4	349.1	253.8	516.5
(keV)					409.2	433.4	
Log ft	5.1	5.0	4.9	4.8	4.9	5.0	5.1
					5.3	5.3	

Nuclear Data Sheets 84, 487 (1998) Article No. DS980015

Review Of Logft Values In β Decay^{*}

B. SINGH, J. L. RODRIGUEZ

Department of Physics and Astronomy McMaster University Hamilton, Ontario L8S 4M1, Canada

S. S. M. WONG

Department of Physics University of Toronto Toronto, Ontario M5S 1A7, Canada

J. K. TULI

National Nuclear Data Center Brookhaven National Laboratory Upton, New York 11973, USA

Narastanie linii 168 keV, cykl 111 ms

$E_{lev}[keV]$	I_{β}	$\log ft$	$ E_{lev}[keV] $	Iβ	$\log ft$
0.0	0.0		555.6	2.9(0.4)	6.0
34.6	0.1 (2.1)	7.8	601.7	4.3(0.5)	5.9
131.7	0 - 4.6	≥ 6.0	627.4	1.8(0.3)	6.2
203.2	$\leq 19.2 \ (1.2)$	≥ 5.3	632.1	2.7(0.4)	6.0
207.7	0.0		641.0	0.8(0.2)	6.6
225.4	3.7 (0.8)	6.0	744.6	3.4(0.4)	5.9
236.7	7.4 (1.0)	5.7	770.0	0.7(0.1)	6.6
266.5	1.9 (0.2)	6.3	838.6	1.0(0.3)	6.4
321.2	5.9(0.6)	5.8	849.0	0.3(0.1)	6.9
321.3	2.0 (0.3)	6.3	929.3	0.4(0.1)	6.8
364.7	1.9 (0.7)	6.3	1023.2	0.4(0.1)	6.8
435.6	3.2(0.5)	6.0	1033.5	0.4(0.1)	6.7
516.5	27.7 (1.7)	5.1	1914.5	0.8(0.1)	6.2
544.4	2.5(0.3)	6.1			

117Rh 7/2+ Q=7527 keV T=421 ms

Izotop	105Pd	107Pd	109Pd	111Pd	113Pd	115Pd	117Pd
Energia poziomu 5/2+	318.9	302.7	326.9	275.4	349.1	253.8	516.5
(keV)					409.2	433.4	
Log ft	5.1	5.0	4.9	4.8	4.9	5.0	5.1
					5.3	5.3	

Sparowany neutron zmieniając się w proton zajmuje najniższy stan energetyczny tworząc parę z niesparowanym protonem, stany jądra końcowego są stanami dziur neutronowych. Neutron nie obsadza wyższych stanów protonowych – nie tworzą się stany trój-kwazicząstkowe (2pn). To ma miejsce w rozpadach Rh -> Pd

Sparowany neutron zmieniając się w proton zajmuje stan wzbudzony, stany jądra końcowego są stanami trój-kwazicząstkowymi (p2n), ze znacznie mniejszym prawdopodobieństwem nieparzysty neutron zamienia się w proton tworząc protonowe stany jednocząstkowe. To zachodzi w rozpadach Ru -> Rh i Pd -> Ag

Co może być przyczyną różnic w obserwowanych rozkładach nasilenia przejść beta?

- brak odpowiednich poziomów różnice strukturalne
- zbyt wysoka energia poziomów dostępnych do obsadzenia
- duże róznice deformacji

PHYSICAL REVIEW C, VOLUME 65, 021303 Oblate stability of A~110 nuclei near the r-process path

F. R. XU, P. M. WALKER, AND R. WYSS

FIG. 1. The calculated single-neutron (top) and single-proton (bottom) levels of the Woods-Saxon potential. Axial symmetry is assumed with $\beta_4 = -|\beta_2|/6$ which gives approximately the hexade-capole value of the ground states obtained from the TRS calculations. Positive (negative) parity is indicated by solid (dashed) lines.

	117Rh	117Pd	117Ag
Δ_n	995	1288	1087
$\Delta_{ m p}$	1248	951	1356

Nuclei		Prolate	multi-q	p states		Gr	ound stat	es
	K^{π}	E _{ex} (MeV)	β_2	$oldsymbol{eta}_4$	$ \gamma $	$oldsymbol{eta}_2$	$oldsymbol{eta}_4$	$ \gamma $
¹¹⁰ Zr	6-	1.6	0.33	-0.04	0°	0.35	-0.04	0°
^{112}Zr	6-	1.7	0.36	-0.03	2°	0.22	-0.04	60°
^{112}Zr	7-	2.0	0.32	-0.05	0°			
¹¹⁴ Zr	7-	2.7	0.36	-0.04	1°	0.17	-0.04	60°

Nuclei	Obl	ate mul	ti-qp state	s	G	round state	es
	$E_{\rm ex}$ (MeV)	$oldsymbol{eta}_2$	$oldsymbol{eta}_4$	γ	$oldsymbol{eta}_2$	$oldsymbol{eta}_4$	γ
¹⁰⁰ Se	1.7	0.25	0.0	59°	0.29	-0.03	0°
¹⁰² Kr	2.1	0.27	0.0	60°	0.32	-0.01	0°
¹⁰⁴ Sr	3.0	0.25	-0.01	60°	0.34	-0.01	0°
¹⁰⁶ Zr	2.7	0.22	-0.02	63°	0.34	-0.02	0°
¹⁰⁸ Mo	1.4	0.22	-0.03	63°	0.32	-0.01	18°
¹¹⁰ Ru	1.4	0.23	-0.03	65°	0.28	-0.01	23°
¹¹² Pd	1.4	0.22	-0.03	65°	0.25	-0.02	40°

P. SARRIGUREN [PHYSICAL REVIEW C 91, 044304 (2015)]

Stany izomeryczne w nieparzystych izotopach palladu

 $h = \lambda_w / \lambda_{exp}$

Fig. 1. Gamma-ray strength distributions in the A = 91-150 region for transitions of different character (E0-E6, M1-M4). The logarithmic abscissa scale indicates the strength in Weisskopf units, except for E0 transi-

tions which are in Wilkinson units.

- 110

- 100

_90

-80

-70

-60

-40

-30

_20

- 10

- 10

. 6

PHYSICAL REVIEW C 91, 044304 (2015) β-decay properties of neutron-rich Ge, Se, Kr, Sr, Ru, and Pd isotopes from deformed quasiparticle random-phase approximation P. Sarriguren

FIG. 1. Potential energy curves for even-even neutron-rich Ge, Se, Kr, Sr, Zr, Mo, Ru, and Pd isotopes obtained from constrained HF + BCS calculations with the Skyrme force SLy4.

P. Möller, A.J. Sierk, R. Bengtsson, H. Sagawa, T. Ichikawa, Atomic Data and Nuclear Data Tables 98 (2012) 149–300

¹¹⁷Pd

$E_{lev}[keV]$	I_{eta}	$\log ft$	$ E_{lev}[keV] $	Iβ	$\log ft$
0.0	0.0		555.6	2.9(0.4)	6.0
34.6	0.1(2.1)	7.8	601.7	4.3(0.5)	5.9
131.7	0 - 4.6	≥ 6.0	627.4	1.8(0.3)	6.2
203.2	$\leq 19.2 \ (1.2)$	≥ 5.3	632.1	2.7(0.4)	6.0
207.7	0.0		641.0	0.8(0.2)	6.6
225.4	3.7(0.8)	6.0	744.6	3.4(0.4)	5.9
236.7	7.4(1.0)	5.7	770.0	0.7(0.1)	6.6
266.5	1.9(0.2)	6.3	838.6	1.0(0.3)	6.4
321.2	5.9(0.6)	5.8	849.0	0.3(0.1)	6.9
321.3	2.0(0.3)	6.3	929.3	0.4(0.1)	6.8
364.7	1.9(0.7)	6.3	1023.2	0.4(0.1)	6.8
435.6	3.2(0.5)	6.0	1033.5	0.4(0.1)	6.7
516.5	27.7 (1.7)	5.1	1914.5	0.8(0.1)	6.2
544.4	2.5(0.3)	6.1			

Ag Liczba masowa	107	109	111	113	115	117	119
Energia (keV) 7/2+ -> 1/2-	93	88	69	43	41	29	?
h(E3)	32	26	22	21	16	11	

Increased rigidly triaxial deformations in neutron-rich Mo, Ru isotopes

WuYang Liang¹, ChangFeng Jiao¹, FuRong Xu^{1*}, and XiMing Fu²

Figure 5 Calculated WS single-proton levels versus the γ deformation. Solid (dot-dashed) curves stand for positive-parity (negative-parity) levels. The calculation is done with fixing $\beta_2 = 0.31$ and $\beta_4 = 0.0$ (Corresponding to the deformation of the ¹⁰⁶Mo ground state). The proton number of Z=42 is indicated.

PHYSICAL REVIEW C 95, 064311 (2017)

Oblate deformation in neutron-rich ^{118,119}Ag

E. H. Wang,¹ J. H. Hamilton,¹ A. V. Ramayya,¹ Y. X. Liu,² H. J. Li,³ A. C. Dai,⁴ W. Y. Liang,⁴ F. R. Xu,⁴ J. K. Hwang,¹ S. H. Liu,¹ N. T. Brewer,^{1,*} Y. X. Luo,^{1,5} J. O. Rasmussen,⁵ Y. Sun,⁶ S. J. Zhu,³ G. M. Ter-Akopian,⁷ and Yu. Ts. Oganessian⁷

First observation of the beta decay of II7Pd and the discovery of a new isotope II9Pd H. Penttilii , J. Aysto, K. Eskola , Z. Janas , P . P . Jauho , A. Jokinen , M . E . Leino , J. M. Parmonen ,and P. Taskinen Z. Phys. A - Hadrons and Nuclei 338, 291 (1991)

967	21		0.6 (dj fd	X HP		-	1/9	RA 0.92	s 10 f	, m 2	2	aperasa	- 2787
201										2 1191	0, ,		2,0 5,7	2
	[0,					100								5000
	20.4				1(124.9) > 1			Ka	17-7258	×				222
	12						L L				01	i. Li		
-							+				10	- d		1920
											215	- 20		
								XHP			2.5	29		- 2128
											2,2	573	12000	2080
	-			12 6.1			-	X Wang					641	
155	16.6	2-10		1.0 6.4									135200	
18	82.2	(2:2) (14, 14,		2.9 5.9				119	Aa				212 212 212 212	
14	03.2	en 4 en 20		118 6.1			\cup		2	c (7/2+)	54 57			
10	62 0	205 (3.6 5.9			The state		3 60	\$ (?)	0.2 7.1			1675
-		C3.4		1.9. 6.1) 6/	0	
151	8,6	5.2				2.1. 6,2					113 64	130	07	1545
140	a1	1256				4.5 5.6						0	6.24	
14	5412	70	2000			2.4 6.2	-				dosi	212 (2) 3,2) 3,2	-0V	121.2
13	58.0	3	(3) (3)			-0.6 6.8					10,00	200		
126	7		3404	<u></u>		196.2		217,61		1213.0		12 CH2		
AAC	20-		10000			- 3.4 5.6		1.06.6	3/2					- 1173,
	10		1011	2222		17. 19	T	1.664	(6 3)		200			1177
10	32.0 -			1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		-1+ 4-	-		15	(3.0	06.3			
90	06.W	× × × × × ×		34		6,15.9		10 16	1 I	2.5	40			0.00
8	7h.1			6.2 (6,4 5,9		0127 30	, _	4		J.		
27	10.1			V 654		12,35.61				- 12/AX				
1	0/ 2			1113	(20)	-6.1 6.0		8/2 5/8		\$ 6805				
6	1016			ि मि	6.9.86			6.1 6.0 M/2T		* _ +	5		-V	637
				10 N 12	1 2 2 2 2 2 2					21.6	2			
					1 23		-		2.57	200	7			
					8				9 4 0 E	192	*			
?	26.5 -	5/2-			V V 875	18215,6			12 60 60 20	Exx				
2	567 -	3/2-		V V V	V V * 33	5,261				X				
-					49V			al JESPIST		1 568				
							\sim	1410 31 21 42		XVV	V V V			
-		11-					Real Sector	7/2+		×				

Identification of ¹⁰⁹Mo and possible octupole correlations in ^{107,109}Mo

J. K. Hwang,¹ A. V. Ramayya,¹ J. H. Hamilton,¹ L. K. Peker,¹ J. Kormicki,¹ B. R. S. Babu,¹ T. N. Ginter,¹ G. M. Ter-Akopian,^{1,2,3} Yu. Ts. Oganessian,² A. V. Daniel,^{1,2,3} W. C. Ma,⁴ P. G. Varmette,⁴ J. O. Rasmussen,⁵ S. J. Asztalos,⁵ S. Y. Chu,⁵ K. E. Gregorich,⁵ A. O. Macchiavelli,⁵ R. W. Macleod,⁵ J. Gilat,^{5,*} J. D. Cole,⁶ R. Aryaeinejad,⁶ K. Butler-Moore,^{6,†} M. W. Drigert,⁶ M. A. Stoyer,⁷ Y. X. Dardenne,⁷ J. A. Becker,⁷ L. A. Bernstein,⁷ R. W. Lougheed,⁷ K. J. Moody,⁷ S. G. Prussin,⁸ H. C. Griffin,⁹ and R. Donangelo¹⁰

PHYSICAL REVIEW C 69, 014317 (2004)

Triaxiality and the aligned $h_{11/2}$ neutron orbitals in neutron-rich Zr and Mo isotopes

H. Hua, C. Y. Wu, D. Cline, A. B. Hayes, and R. Teng

Nuclear Structure Research Laboratory, Department of Physics, University of Rochester, Rochester, New York 14627, USA

R. M. Clark, P. Fallon, A. Goergen, A. O. Macchiavelli, and K. Vetter

Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA (Received 6 October 2003; published 30 January 2004)

PHYSICAL REVIEW C 72, 027302 (2005)

Near-yrast, medium-spin structure of the ¹⁰⁷Mo nucleus

W. Urban,¹ T. Rząca-Urban,¹ J. A. Pinston,² J. L. Durell,³ W. R. Phillips,³ A. G. Smith,³ B. J. Varley,³ I. Ahmad,⁴ and N. Schulz⁵

PHYSICAL REVIEW C 74, 064304 (2006)

Triaxiality in ¹⁰⁵Mo and ¹⁰⁷Mo from the low to intermediate spin region

J. A. Pinston,¹ W. Urban,² Ch. Droste,² T. Rząca-Urban,² J. Genevey,¹ G. Simpson,¹ J. L. Durell,³ A. G. Smith,³ B. J. Varley,³ and I. Ahmad⁴

65.4

z	113In	114In	115In	116In	117In	118In	119In	120In	121In	122In	123In	124In	125In	
	112Cd	113Cd	114Cd	115Cd	116Cd	117Cd	118Cd	119Cd	120Cd	121Cd	122Cd	123Cd	124Cd	
47	111Ag	112Ag	113Ag	114Ag	115Ag	116Ag	117Ag	118Ag	119Ag	120Ag	121Ag	122Ag	123Ag	
	110Pd	111Pd	112Pd	113Pd	114Pd	115Pd	116Pd	17Pd	118Pd	¹¹¹ 7,19Pd	120Pd	121Pd	122Pd	
45	109Rh	110Rh	111Rh	112Rh	113Rh	114Rh	115Rh	116Rh	17Rh	118Rh	119Rh	120Rh	121Rh	
	108Ru	109Ru	110Ru	111Ru	112R0	1913Ru	11 4Ru	115Ru	116Ru	117Ru	118Ru	119Ru	120Ru	
43	107Tc	108Tc	109Tc	110Tc	111Tc	112Tc	11.3Tc	14Tc	115Tc	116Tc	117Tc	118Tc	119Tc	
	106Mo	107Mo	108Mo	omeo	110Mo	111Mo	112Mo	113Mo	114Mo	115Mo	116Mo	117Mo	118Mo	
41	105Nb	106Nb	IIIAPIND	108Nb	109Nb	110Nb	111Nb	112Nb	113Nb	114Nb	115Nb		> 1 10 10	Seconds 10+15 10 +10 10 +07 10
	64		66		68		70		72		74		7(10	+05 10
													10 10 10 10	+03 10 +02 10 +01 10 +00 <