Czy pokrywanie się śladów jonowych może wytłumaczyć kwadratową zależność krzywych dawka-efekt obserwowanych dla aberracji chromosomowych ?

25.01.2018, Warszawa

Agata Kowalska

1. MOTYWACJA

2. METODYKA

3. WYNIKI EKSPERYMENTALNE

4. MODELOWANIE TEORETYCZNE

5. PODSUMOWANIE I PERSPEKTYWY

CEL PROWADZENIA BADAŃ RADIOBIOLOGICZNYCH

RADIOTERAPIA

OCHRONA RADIOLOGICZNA

3

ŚLADY JONOWE

Średnia strata energetyczna na jednostkę drogi [keV/µm] vs Liniowy przekaz energii (LET) [keV/µm]

$$S(E) = -\frac{dE}{dx} \approx LET$$

- LET odnosi się do tarcz mikrobiologicznych
 - LET nie uwzględnia wkładu od elektronów δ o energiach > 100 eV

SCHEMAT ODPOWIEDZI KOMÓREK NA PROMIENIOWANIE JONIZUJĄCE

Ritter S., Durante M. Heavy-ion induced chromosomal aberrations: A review, Mut. Res., 701 (1):38-46 (2010)

Mikroskopowy rozkład dawki a statystyczny rozkład aberracji

Rozkład Poissona:

$$P_p(k) = \frac{\lambda_P^k e^{-\lambda_F}}{k!}$$

k – liczba aberracji na komórkę

λ_p - średnia liczba aberracji na komórkę w populacji

Rozkład Neymana

- n liczba uderzeń w komórkę
- λ_N średnia liczba uderzeń w komórkę
- µ średnia liczba aberracji na komórkę na każde uderzenie

Т

 $P_N(m) = \sum_{n=0}^{\infty} P_{n\mu}(k) P_{\lambda_N}(n) = \sum_{n=0}^{\infty} \frac{(n\mu)^k e^{-n\mu}}{k!} \cdot \frac{\lambda^n e^{-\lambda_N}}{n!} = \frac{\mu^k}{k!} \sum_{n=0}^{\infty} \frac{n^k}{n!} (e^{-\mu} \lambda_N)^n$

KRZYWE DAWKA-EFEKT

1. MOTYWACJA

2. METODYKA

3. WYNIKI EKSPERYMENTALNE

4. MODELOWANIE TEORETYCZNE

5. PODSUMOWANIE I PERSPEKTYWY

METODYKA

LIMFOCYTY KRWI OBWODOWEJ:

- ✓ Łatwo dostępna tkanka
- Mało inwazyjny sposób pobrania
- ✓ Zsynchronizowana populacja
- Wrażliwość na promieniowanie jonizujące limfocytów zbliżona jest do wrażliwości komórek szpiku kostnego

CHROMOSOMY WIDOCZNE SĄ JEDYNIE W METAFAZIE PODZIAŁU KOMÓRKOWEGO!

PROCEDURA PRZYGOTOWANIA MATERIAŁU BADAWCZEGO

IAEA Cytogenetic dosimetry: application in preparedness for and response to radiation emergencies. IAEA, Vienna (2011)

PARAMETRY WIĄZEK UŻYTYCH DO NAPROMIENIOWANIA

NAPROMIENIANIE PROTONAMI

7. blok z plexiglasu (o dowolnie dobranej szerokości) 8. próbka krwi

LET (keV/µm)

J. Kubancak, A.G. Molokanov, Measurements of LET spectra of JINR phasotron radiotherapy proton beam, BATH, 6,8-14, 2013 12

~20 MeV

NAPROMIENIANIE JONAMI BORU

IZOLACJA LIMFOCYTÓW

A.A. Bezbakh et al., Upgrading the Genome Facility for Radiobiological Experiments with Heavy-Ion Beams, Physics of Particles and Nuclei Letters, 10, 175-178, 2013

1. MOTYWACJA

2. METODYKA

3. WYNIKI EKSPERYMENTALNE

4. MODELOWANIE TEORETYCZNE

5. PODSUMOWANIE I PERSPEKTYWY

ROZKAŁADY STATAYSTYCZNE ABERRACJI CHROMOSOMOWYCH DLA WYBRANYCH DAWEK - PRZYKŁADY

ROZKŁADY STATYSTYCZNE ABERRACJI CHROMOSOMOWYCH – POISSON VS. NEYMAN A + ZALEŻNOŚĆ PARAMETRU µ OD DAWKI

KRZYWE DAWKA-EFEKT

EPJ D (2015)

KRZYWE DAWKA-EFEKT

WZGLĘDNA SKUTECZNOŚĆ BIOLOGICZNA – (RELATIVE BIOLOGICAL EFFECTIVENESS – RBE)

1. MOTYWACJA

2. METODYKA

3. WYNIKI EKSPERYMENTALNE

4. MODELOWANIE TEORETYCZNE

5. PODSUMOWANIE I PERSPEKTYWY

EFEKTYWNY PROMIEŃ ŚLADU JONOWEGO

gęstość prawdopodobieństwa odległości między śladami jonowymi

$$P(r) = \frac{1}{2\pi L^2} e^{-\frac{r}{L}}$$

$$\langle r \rangle = \int_0^\infty r \frac{1}{2\pi L^2} e^{-\frac{r}{L}} 2\pi r dr = 2L$$

średnia odległość między uderzeniami

więcej uderzeń ⇒ <

$$S_{ov} = \frac{1}{2\pi L^2} \int_0^{2R} e^{-\frac{r}{L}} s_{ov} 2\pi r dr \approx \frac{F}{2\pi L^2} \int_0^t e^{-\frac{r}{L}} (t-r)t 2\pi r dr \approx F \frac{t^4}{6L^2}$$

średnia powierzchnia pokrywających się śladów

$$s_{ov} = 2R^2 \arccos \frac{r}{2R} - r \sqrt{R^2 - \frac{r^2}{4}} \text{ okręgi}$$
wsp. geometryczny F≈0.58

związek między promieniem śladu a zakrzywieniem odpowiedzi dawka-efekt:

$$R = \sqrt{\frac{3 \cdot LET}{8 \cdot F \cdot \rho_m}} \cdot \sqrt{\frac{\beta}{\alpha}}$$

 $Y = \alpha D + \beta D^2$

EFEKTYWNY PROMIEŃ FIZYCZNY R' WYNIKAJĄCY Z ROZKŁADU DAWKI ELEKTRONÓW WOKÓŁ ŚLADU JONOWEGO

EKSPERYMENT vs. TEORIA

EPJ D (2017)

BIOLOGIA CZY FIZYKA I

FIZYKA CZY BIOLOGIA II

FIZYKA:

PRZEWIDYWANIA MODELU POKRYWAJĄCYCH SIĘ TRAKÓW:

PUNKTY POMIAROWE NALEŻA KOLEJNO DO: kwantów gamma z rozpadu 60Co, szybkich protonów, protonów z rozszerzonego piku Bragga, jonów wegla oraz jonów boru (przy założeniu, że β =1.13±0.01

EFEKTYWNOŚĆ MECHANIZMÓW REPERACJI

WSPÓŁCZYNNIK REPERACJI I PROCENT ZRPEROWANYCH CHROMOSOMÓW

(β/α)	~1 /\/ <i>I.FT</i>			100	ΤΤΤ
$RC = \frac{Y' - Y}{Y'} \cdot 100\%$			Repair Coefficient (RC)	80 - 60 - 40 - 20 - 0 -	$RC = 70 - 3 \cdot LET^{0.5}$
				- ,	LET (keV/um)
	χ^2	RF		RC (%)	
⁶⁰ Coγ rays	0.31±0.20	3.2±2.0		69±20	
150 MeV protons	0.37±0.23	2.7±1.7	63±23		
SOBP protons	0.67 ± 0.40	1.5±0.9	33±40		
¹² C ions	0.26±0.18	3.8±2.7	73±18		
¹¹ B ions	0.43±0.21	2.3±1.1		57±21	

UNIWERSALNOŚĆ METODY

KOMÓRKI CHO-K1 (CHINESE HAMSTER OVARY CELLS)

- KRÓTKI CYKL KOMÓRKOWY 12-14 h
- > ZDOLNOŚCI ADHEZYJNE
- > TWORZENIE KOLONII
- > 22 CHROMOSOMY

Cell	Radiation	LET	χ^2	RF	RC (%)
type	species	(keV/µm)			
CHOK1	⁶⁰ Co γ rays	0.2	0.006±0.0025	160±70	99.0±0.3
	8.09 MeV ¹² C	830	0.44 ± 0.28	2.3±1.4	56±28

J. Czub et al., *Cell survival and chromosomal aberrations in CHO-K1 cells irradiated by carbon ions*, Applied Radiation and Isotopes, 67, 447-453, 2009 28

1. MOTYWACJA

2. METODYKA

3. WYNIKI EKSPERYMENTALNE

4. MODELOWANIE TEORETYCZNE

5. PODSUMOWANIE I PERSPEKTYWY

PODSUMOWANIE

> Zaobserwowano:

- \circ Stałą wartość parametru β modelu liniowo kwadratowego
- Zależność parametru µ z rozkładu Neymana A (opisującego prawdopodobieństwo powstania aberracji na jedno uderzenie) od dawki
- Dużą efektywność mechanizmów reperacji i ich dominujący wpływ na zakrzywienie odpowiedzi dawka-efekt
- RBE<1 dla szybkich protonów
- \circ Model pokrywających się śladów nie opisuje zależności β/α od LET
- Zaproponowano statystyczną metodę oszacowania mechanizmów reperacji

faktor Fano dla aberracji chromosomowych

PERSPEKTYWY –

PCC (Premature Chromosome Condensation)

PLANY NA PRZYSZŁOŚĆ

Badanie oddziaływania neutronów prędkich i termicznych z limfocytami krwi obwodowej

- Eksperymenty w Dubnej reakcje D-T, neutrony reaktorowe, Cf, Pu-Be, Am-Be
- Eksperymenty w Szczecinie (eLBRUS) reakcje D-D

Wykorzystanie metody PCC

- Badanie mechanizmów reperacji komórkowej w zależności od czasu po napromienianiu
- Wyznaczenie czynnika Fano w zależności od czasu po napromienianiu
- Badanie rozkładów statystycznych uszkodzeń po napromienianiu neutronami wyjaśnienie obserwowanych odchyleń od statystyki Poissona
- Badanie efektów porywania się obszarów oddziaływania pojedynczych neutronów rozdzielenie efektów fizycznych i biologicznych

GRUPA BADAWCZA

- E. Nasonova P. Kutsalo
- E. Krasavin

DZIĘKUJĘ ZA UWAGĘ !