Badanie własności neutrononadmiarowych nuklidów w okolicy ¹³²Sn

Agnieszka Korgul

 M. Piersa, E. Adamska, P. Bączyk, A, Fijałkowska, M. Fila, Z. Janas, M. Karny, M. Kicińska-Habior, C. Mazzocchi, K. Miernik, T. Rząca-Urban, M. Stryjczyk, W. Urban (University of Warsaw)

L. M. Fraile, J. Benito, V. Sánchez-Tembleque, J. M. Udías., V. Vedia (Universidad Complutense de Madrid)

H. Mach (Studsvik)

K. P. Rykaczewski, C. Gross (Oak Ridge National Laboratory,)

R. Grzywacz, C. Jost, M. Madurga, D. Miller, S. Padgett, S. V. Paulauskas (University of Tennessee)

Motywacja badań

- astrofizyczny proces r
- struktura jąder egzotycznych

Motywacja badań – Astrofizyczne procesy

Proces szybkiego wychwytu neutronu (proces r) – kolejne wychwyty neutronów następują zanim nowo powstałe jądro niestabilne rozpadnie się.

Własności jąder definiujące przebieg ścieżki procesu r to m.in.

- czas połowicznego zaniku β ,
- prawdopodobieństwo emisji neutronu opóźnionego po rozpadzie β.

Motywacja badań - struktura nuklidów egzotycznych

4

Motywacja badań - struktura nuklidów egzotycznych

Zapełnianie powłoki g_{9/2}

T. Otsuka et al. Acta Phys. Pol. B 36, 1213 (2005)

Podwójnie magiczne jądro ⁷⁸Ni

Motywacja badań c.d.

 $f_{5/2}$ $j_{<}=1-1/2$

 $f_{7/2}$ $j_{>}=1+1/2$

Rozszczepienie spin-orbita w zależności od wartości izospinu $j'_{<}=1^{-1}/_{2}$ $\Delta 1=0,1$

 $j'_{2}=1+1/2$ **8**9/2

Pytanie:

– punkt przecięcia poziomów protonowych $\pi p_{3/2}$ oraz $\pi f_{5/2}$ powyżej Z=28

T. Otsuka et al. Acta Phys. Pol. B 36, 1213 (2005)

Motywacja badań - eksperyment ORNL

Motywacja badań – ¹³²Sn

Podwójnie magiczne jądro ¹³²Sn

Podwójnie magiczne jądro ¹³²Sn c.d.

Stany wzbudzone w ¹³⁵Sb

A.K. et al. Eur. Phys. J. A 32, 25 (2007).

Obszar ¹³²Sn

- migracja poziomów jednocząstkowych

- brak znajomości wszystkich energii jednocząstkowych

¹³²Sn – status badań

P. Hoff et al., PRL 77, 1020 (1996).

K. Jones et al. Nature 465, 454-457 (2010)

energia vi $_{13/2}$ - nieznana

¹³⁴Sb – neutron + proton walencyjny

¹³⁴Sb – energia jednocząstkowa vi_{13/2}

 $E(10^{+})=E(\pi g_{7/2})+E(\nu i_{13/2})+E_{int}$

E_{int} – skalujemy z obszaru ²⁰⁸Pb

208 Pb \rightarrow^{132} Sn			¹³² Sn		
Configuration	V_0	V_1	Configuration	V_2	ΔV
$(\pi h_{9/2} \nu j_{15/2})_{12+}$	-621	-723	$(\pi g_{7/2} \nu i_{13/2})_{10+}$		
$(\pi h_{9/2} v g_{9/2})_{9-}$	-396	-461	$(\pi g_{7/2} \nu f_{7/2})_{7-1}$	-488	-27
$(\pi h_{9/2} \nu i_{11/2})_{10-}$	-776	-903	$(\pi g_{7/2} \nu h_{9/2})_{8-}$	-976	-73
$(\pi i_{13/2} \nu g_{9/2})_{11+}$	-960	-1117	$(\pi h_{11/2} \nu f_{7/2})_{9+}$	-1154	-37
$(vg_{9/2}vi_{11/2})_{10+}$	-221	-257	$(\nu f_{7/2} \nu h_{9/2})_{8+}$	-280	-23
$(\pi h_{9/2} \pi f_{7/2})_{8+}$	+107	+125	$(\pi g_{7/2} \pi d_{5/2})_{6+}$	+201	+76

3p_{1/2}

1i_{13/2} 3p_{3/2}

.2f_{5/2}

1h_{9/2}

 $2f_{7/2}$

82

3s_{1/2}

2d{3/2}

.1h_{11/2}

2d_{5/2}

1g_{7/2}

(50)

¹³³Sn – energia jednocząstkowa vi_{13/2}

$E(vi_{13/2})= 2669(70) \text{ keV}$

Propozycja nowego pomiaru – stany w ¹³³Sn

132Sb
133Sb
134Sb
135Sb
136Sb

131Sn
132Sn
$$33$$
Sn
134Sn
135Sn
N=82

130In
131In
132In
 133 In
 134 In

7=50
7
7
7

•

 $I^{\pi} = (9/2)^+ \Rightarrow 7/2, 9/2, 11/2$

 $I^{\pi} = (1/2)^{-} \Rightarrow 1/2$, 3/2

- przemiana β^{133} In $I^{\pi} = (9/2)^+$ stan podstawowy $I^{\pi} = (1/2)^-$ stan izomer.

- przemiana β n ¹³⁴In I^{π} =(4 do 7)⁻

Eksperyment - CERN, ISOLDE

protony 1.4 GeV, ~ $2 \mu A$

tarcza UC_X

RILIS The Resonance Ionization Laser Ion Source

http://rilis.web.cern.ch

Eksperyment - CERN, ISOLDE

RILIS The Resonance Ionization Laser Ion Source

Separator masowy - A Laser – selekcja Z

Eksperyment – układ detekcji

- Ge: 1.2 MeV - 3.7 % 4.3 MeV - 1.3 %
- korelacja z protonem
- elektronika cyfrowa

Status badań: przemiana β^{133, 134}In

140 ms 4

P. Hoff et al., PRL 77, 1020 (1996). http://www.nndc.bnl.gov P. Hoff:

- problem: bardzo duże P_n,
- A=134 stany w ¹³³Sn,
- A=133 niska statystyka

 $^{133}_{50}Sn_{83}$

Podsumowanie

- ISOLDE, CERN: przemiana β ^{133,134}In

- po raz pierwszy osobno zbadano przemianę β stanu podstawowego I^{π} =(9/2)⁺ i izomerycznego ¹³³In I^{π} =(1/2)⁻